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CHAPTER I

INTRODUCTION

Computer simulation and radiation pattern analysis of
fuselage-mounted airborne antennas at high frequencies are the object of
this research. The primary goal of this investigation is to develop an
analytic solution for predicting radiation patterns of airborne antennas
in a more accurate and efficient manner. The radiation pattern analysis
is based on the uniform geometrical theory of diffraction (UTD) which is
a uniform extension of Keller's geometrical theory of diffraction (GTD)
[1]. The UTD solution [2] for the radiation from sources on a convex
surface is employed to compute the radiated field from the antenna
mounted on an aircraft fuselage. The aircraft scattering analysis is
based on the UTD solutions for wedge [3,4] and corner diffraction
[6,21,29]. The theoretical formulation of UTD is discussed in some

detail in Chapter II.




One of the principle problems in the design of a reliable airborne
antenna system is the location of the antennas on the aircraft structure
in order to achieve the desired radiation coverage. If modern systems
are to function properly, the antenna pattern must meet certain
specifications. In fact, the antenna system performance is very much
dependent upon the resulting antenna radiation patterns. Until
recently, airborne antennas were located by simply choosing among those
locations allowed by the aerodynamacist which met the required
specifications and scale model measurements then were used to evaluate
the performance of the antennas in terms of its desired pattern. This
approach of airborne antenna design requires a lot of engineering time
and is also very expensive; furthermore, there are many antennas mounted
on a single aircraft, Therefore, the need for an efficient analytic
solution to compute airborne antenna radiation patterns is quite
apparent, If these antennas can be located on the aircraft at the
design stage using an analytic solution, then one can expect better
performance in that more optimum locations and necessary structural
changes can be anticipated. In addition, a future relocation or
addition of antennas on an aircraft within its useful lifetime can also
be easily accomplished through this approach. Once an optimum region is
determined, the antenna can simply be flight tested to ascertain its
actual performance. Not only can these analytic solutions be used to
determine the best location, but they can, also, determine a more

optimum antenna design for a given application.



Since it is a study of general-type aircraft, the
aircraft is modelled in its most basic form. Previously the aircraft
fuselage was simulated by an elliptic cylinder and the rest of the
aircraft appendages were modelled by finite flat plates [7,8,9].
However, the elliptic cylinder model could not predict the pattern close
to the nose or tail sectors, where the'deviation from the physical
situation becomes very prominent. In fact, the fuselage has a dominant
effect on the resulting radiation pattern of a flush-mounted airborne
antenna. In order to overcome this deficiency, a composite prolate
spheroid model was introduced [10,11]. The significance of this
solution is that the spheroid model provides the proper polarization and
curvature effects as opposed to the cylinder which models only one
curvature. Note that the surface geometry dictates the polarization of
the radiated field [2]. However, the prolate spheroid representation of
the fuselage is not general enough to satisfactorily approximate the
wide variety of aircraft. The inadequacy asociated with the prolate
spheroid results from its circular cross-section. It has been shown in
[8] that an elliptic cross-section is necessary to successfully simulate
the wide variety of aircraft fuselage shapes. Therefore, the composite
ellipsoid fuselage model used here becomes necessary. The development
of the composite ellipsoid fuselage model should provide as much
generality as needed to simulate the wide variety of aircraft found in

practice.




In applying the UTD to antenna radiation problems involving curved
surfaces, a major task is to determine the geodesic paths on the curved
surface. An efficient numerical technique to find the creeping wave
geodesic paths on an ellipsoid [13,14] and the computer simulation
technique of the whole aircraft structures are discussed in some detail

in Chapter III.
determine the fields incident on the various scatterers. The fields
diffracted are found using the UTD solutions in terms of rays which are
summed with the geometrical optics terms. The rays from a given
scatterer tend to interact with the other structures causing various
higher-order terms. 1In this way one can trace out the various possible
combinations of rays that interact between scatterers. Thus, one need
only be concerned with the important structural scattering components
which have dominant effects on the radiation pattern calculation, and
neglect all other higher-order terms. The algorithms for the actual
calculation of various UTD terms are discussed in Chapter IV,

Using these algorithms, the Ellipsoid-Model Aircraft Code [15] has
been developed to compute and superimpose the various UTD terms for the
near or far field calculation., The validity of this analytic solution
is verified in terms of comparisons with measured data for the wide
variety of aircraft. The radiation pattern analysis is presented in

Chapter V,




Since UTD is essentially a high frequency solution, the source and
various scattering centers should be separated by at least a wavelength,
In terms of the ellipsoid struct&re its semi-minor axes should be at
least a wavelength in extent. In terms of the scattering from a plate
this means that each plate should have edges at least a wavelength long.
In addition, each antenna element should be at least a wavelength from
all edges. In some cases even this requirement can be relaxed. The
upper frequency limit is dependent on how well the theoretical model

simulates the important details of the actual structure,




CHAPTER II

THEORETICAL RACKGROUND

A. INTRODUCTION

The principal analytical tool employed in this report is the
uniform geometrical theory of diffraction (UTD). The UTD is basically a
uniform extension of Keller's geometrical theory of diffraction (GTD)
[1] but is valid within transition regions adjacent to shadow and
reflection boundaries. The radiation from sources on convex surfaces
and scattering from flat plates are analyzed using UTD in this
chapter., The surface parameters of an ellipsoid yhich is used to
simulate the aircraft fuselage are also introduced here. The curved
surface and plates are assumed to be perfectly conducting, and the
surrounding medium of the structure is free space. An exp (juwt) time
dependence is assumed and suppressed throughout this chapter. One
is referred to references [16,34] for a more extensive treatment on the

theory and application of UTD,



B. RADIATION FROM A CONVEX SURFACE

The development of a uniform GTD (UTD) solution is presented in
this section for the electromagnetic field radiated by an aperture in or
a short monopole on a smooth perfectly conducting convex surface. For
an aperture in a convex surface it is convenient to define an
infinitesimal magnetic current moment dsm(Q') at any point Q' in the

aperture as

d?_(Q') = E(Q')xn'da’ (2.1)

where

E(Q') is the electric field,
a.

is the outward unit normal vector to the surface, and

da' is an incremental area at Q'.

The tangential electric field in the aperture is assumed to be known.
The dﬁm(Q') radiating in the presence of the perfectly conducting convex
surface, which now covers the aperture as well, constitutes the
equivalent source of the electric field dEm(P/Q') produced at any point
P exterior to the surface. The total radiated electric field Em(P) is
then found by integrating the incremental field dEm(P/Q') over the total

area A of the aperture. Thus, the radiated electric field is given by

E,(P) = f dE(P/Q") . (2.2)




Following the above development for the equivalent sources in the
aperture radiation problem one may similarly define an infinitesimal
electric current moment dae(z') in dealing with the radiation by a

monopole on a convex surface as

dPy(Q') = I(2')de'n' (2.3)

where
I(2') denotes the electric current distribution on the monopole
and is assumed to be be known, and

%' is the distance along its length measured from the base at Q'.

It is also assumed that the monopole is a short thin wire whose total
length h is much smaller than the principal surface radii of curvatures
at Q'. The current moment dﬁe(z') radiating in the presence of the
perfectly conducting surface constitutes the equivalent source of the
electric field dEe(P/z') produced at P exterior to the surface. The
total radiated electric field Ee(P) then can be approximately
calculated from a knowledge of oniy the field dEe(P/Q'), which is
produced by the dse(Q') in the presence of the perfectly conducting
convex surface, by simply rep]aéing dse(o') by f: dse(z') cos(kz'cosei)
if P is in the 1it region, or by fg dse(z‘) if P is jn the shadow
region. It is noted that the cosei inside the integral is defined by

cos®' =n' . s, where s is the radiation direction in the 1it zone from

any point on the monopole, with 0 < &' < h,




According to geometrical optics, the space surrounding the source
js divided into an illuminated and shadow regions by a plane tangent to
the surface at Q'. This plane i; referred to as a shadow boundary. The
present formulation or ansatz of the uniform GTD solution leads to
separate representations for the radiated field dEm(P/Q') in the shadow

e

and 1it regions, respectively. However, these different representations

will be shown to match exactly in polarization, amplitude, and phase at

the shadow boundary.

1. Shadow Region

According to the generalized Fermat's principle, a ray emanating
from a source, which is located on the surface, follows a geodesic path
on the surface and continually sheds energy into the shadow region.
Such a creeping wave mechanism is illustrated in Figure 2.1(a), from
which it can be seen that a surface ray traverses from the source point
at Q', follows a geodesic path Q'0 to the diffraction point Q and then
propagates along the geodesic tangent at Q toward the observation point
Ps which is located in the shadow region of the curved surface. As
shown in Figures 2.1(b) and (c), n' is the unit surface normal vector,
t' is the unit tangent vector of the geodesic path and the binormal
unit vector is given by b* = t' x n' at the source point Q'. Similar
unit vectors are introduced along the geodesic path. Thus at the

diffraction point Q, n is the unit surface normal vector, t is the unit




LENGTH OF ARC Q'Q"Q =t

DISTANCE |QRI = §
LENGTH OF ARC Q'Q"s 1,

% AXIAL
RAY PATH
dy Q'ap,

DIFFRACTED
WAVEFRONT
AT P,

e \ \ suérn‘c‘t\a
CONVEX SURFACE © DIFFRACTED g
RAY Tuse °

(a). Perspective view of a surface diffracted ray tube (enlarged view).

(b). Top view of diffracted ray (c). Side view of surface
tube indicating the diffracted ray tube and
divergence of the rays and the unit normal and
the unit binormal vectors  tangent vectors at Q'
at Q' and Q. and Q.

Figure 2,1. Surface diffracted ray tube and ray coordinates for the
shadow region,
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tangent vector of the geodesic and the binormal unit vector is given by

b=txn. The following solution is valid for torsional geodesic paths,

where G'#B.

The incremental field dEm at Pg can be expressed in terms of the

e
field at a reference point Py by [2]

(2.4)

where p? and pg are the principal radii of curvatures of the wavefront

3

and 0[m'2, m>~, ....] are the higher order terms.

It is seen that if the reference point Po is moved to the curved
surface diffraction point Q, then pg + 0, pg * p.» and s, > s. Note
that Pe is the surface diffracted ray caustic distance which can be
found via differential geometry [17]. Since dEm(PS) is independent of

e
the reference point Po’ such that

. d = T ' .
l1TQ ’ Py dEg(Po) =1.(0",Q) ; (2.5)

o e
d

pl+0

then,

11




; - o -iks
dE (P.) ~ L (Q',Q) S(p+s) © . (2.6)
e e

Furthermore, [m(Q',Q) can be related to the source strength dl5m at Q'
e e
by

Ln(Q',0Q) = ¢ (Q").T (0",Q) (2.7)
e e e

where fm(d',Q) is given by [2]
e

-jk A -~ A A ~ -~ -~ A
m(Q5Q) = 777 [b'AT1(Q")H + t'bT,(Q*)S + b'bT4(Q')S + t'nT,(Q")H]

~|1/6

dy. |
e jdn(Q) II pg(Q") ! o (2.8)

-ijo
e(Q,Q) = 77— [A'AT(Q')H + n*BTg(Q")s]

-4l

dv, | oy(0) |1/ (2.9)

-jkt ° ,
g(Q)

€ dn(Q)
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The quantities Ty(Q'), eeeeees. » Tg(Q') are the torsion factors at Q'
and are given in Table 2.1. It is noted that the effect of torsion is
confined to the source location and depends on the direction of the
surface ray with respect to the principal directions of the surface at
the source point. In other words, it does not depend on the surface ray

path away from the source. The uniform Fock functions are expressed as

H = g(§) (2.10)
and .
-J -
S = m(Q") g(E) (2.11)
with
(e 1 f=° ) exp(-JtE)
g(g) = /5 T .
’ =exp(-j2n/3) Wa(T) (2.12)
and
“e) lfw 4 exp (- t£) (2.13)
= Jn Ty
s ’ =exp(-j2m/3) wa(7)

which are known as the acoustic hard and soft Fock functions,

respectively. The Fock type Airy function is given by

13
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Wz('f) = /%Ff

3
dt.exp (tt-t/3)
wexp(j2n/3) . (2.18)

1
and wz(r) is the derivative of wz(r) with respect to r. The Fock

parameter £ for the shadow region is given by [2]

) (2.13)

with

. (2.16)

Here pg(r') is the surface radius of curvature along the ray path at t'.
The wavenumber (k) is taken to be that of free space. The width of the
surface ray tube at Q,dn(Q), is given by

dn(Q) = pd¥ (2.17)

Note the parameters Z, and t are defined as the free space wave impedance

and geodesic arc length from Q' to Q, respectively.

15




Combining Equations (2.6) - (2.17), the n and b directed components

of dEm(Ps) are given by
e

(a) dl;m(Q‘) case:

- ( ')_|-1/6
-jk _ . ) ‘ Dg Q /d‘l’o / 1
aE"(p,) = 7P keI | ——— | [ — Ty
[ P\t I y Uy J “\PcT3Y
e~Jks 4 orm=23 (2.18)
and
- —=1/6
, ik o | 2@
= — [(dP ob" P oot! -J
dE (P¢) = 75 [(dPeb")T S+(dP t')S] e 99(0)
% 1 ~iks 2 -3 |
dv s(e+s) & ° Ofm =, m 7] (2.19)
(b) dPe(Q') case:
. - —,~1/6
. p,(Q") dy,
n,o .\ —3klo -kt |3 2 _r
e~3ks 4 orm=2] (2.20)

16



and

_-kZ . pg(Q') d’llo 1
b ] . -jkt - -
dEg(Pg) = —37— dP,(Q")T Se™d ) m STo7e)
e~3ks 4 orm=23 (2.21)

where T, = T(Q')pg(Q‘) with T(Q') being the surface torsion at the
source location (refer to Table 2.1). The ray divergence factor
JEEEFT@ is used to describe the amount of separation between adjacent
geodesic paths as surface rays propagate around the surface as shown in
Figure 2.1(b), in which dy, and dy are the angles subtended by the

surface ray tube at the launching Q' and diffraction Q points,

respectively.

2. Lit Region

In the 1it region, the radiated energy propagates directly from the
source Q' to the field point PL along the incident ray of geometrical
optics as shown in Figure 2.2(a). For convenience, a ray-fixed
coordinate system is wused to describe the polarization properties. The
unit vector g is in the direction from Q' to P, and ﬁ' is again the unit
surface normal vector at Q'. The incident plane is defined as the plane
containing the unit vectors s and n'. The unit tangent vector t' is the

projection of the unit vector s in the tangent plane such that

- a : Al ]
s =n'coso + tzsine1. The tangent plane is defined as the plane

17




(a)

A At s cosd’
a . A 248 go.e'é;‘!lﬂaa
al s s*n 4
A A, A A A A
™ b;-f,xn-b-sxn
Q' "

(b)

Figure 2.2. Ray tube and ray coordinates for the 1it region.
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tangent to the curved surface at Q'. Hence, f; is tangent to the

curved surface at Q'. The binormal unit vector at Q' is defined by

6; = f; X 3'. The unit vector H’is in the incident plane, perpendicular
to s and directed outward from the curved surface. The binormal unit

vector at PL is given by b = s x n.

In the ray optical approximation, the field dEm(PL) at the field

e
point P may be expressed by
i i -
- - °1 P2 -3ks 2 .3
dEm(PL) ~ dEm(Po) T~ T~ e + 0[m2 oMy ],
e e (py*sg) (p*s,) (2.22)

Since Q' is the only caustic of the incident rays, the principal radii
of curvature 01 and p; associated with the incident wavefront at P0 are
identicatl, i.e., p} = p; = p1. Furthermore, dEm(PL) is independent of

~ ~ e
the reference point Po. If Po is chosen to be at Q', it follows that

1im p1dEm(P°) = Eé
e

(1]

S, * S (2.23)

should exist. Thus, L; can be related to dP_(Q') by [2]
e e

19




Ly = dP (Q") - T . (2.24)
e

Equations (2.22) - (2.24) are, then, combined to yield

- - , =9 e-jks =2 -3
dER(PL) ~dPR(Q') = Tp » =5+ 0[m%, m>,...] (2.25)
e e e
where
=£ -jk ala al a al A al a
Tn = 3w [DgnA + t,bB + bbC +t 0] (2.26)
and
= -jkzo A A
2
Te = 4 [n nM + n bN] (2.27)

where A, B, C, D, M, and N are defined in Table 2.2. Note that dE_(P,)

~ ~ e
is decoupled into n and b components as follows:
(a) dsm(Q') case:
n :Lli ] i
dE;(P) = [( dP b') (H Ty 2Fcos 6! ) + (dP ot )ToFcose’ ]
-jks
e -2
s+ 0[m°] (2.28)

and

20




TABLE 2.2

FOR LIT REGION

BLOT OA ¢j_case woNOPOLE OR ¢, CAsE
A . c ° - " To F
W o tiFeond' |2t 18 Fen0' | 1oF | 1oF cos @' |f 0ia8' [w* e 13F ca08']| s1a8' 1F 18" 4,107 :‘.":.‘.:""l
b :EE. B Wh! Y L 2 2.1
dEC(P ) = 7, [(dP +b')T F 4 (dP_«t')(S™ - TSFcose')]
=jks
e
-2 -3
s * 0lm" m”] (2.29)
(b) dse(Q') case:
. : -jks
'JkZo . N e
n N s -
dEQ(P) = —g7- dP,(Q")sine' [W* + T2Fcose’ | —— + 0[m;’]
(2.30)
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and

-ikZg e-Jks

b - 'Veingal Ale=2
dEe(PL) = T an dpe(Q )sine TOF s + O[mz ] . (2.31)
The functions H* and S* are defined by
. -385/3
= g(g)) e (2.32)
and
e I 130
$* = m (Q) g(g,) e (2.33)

in which the hard and soft Fock function g and g have been defined

previously in (2.12) and (2.13), respectively. The Fock parameter £,

for the 1it region is given by

g, = -mz(Q')cose1 (2.34)

m(Q')

m,(Q') = - . .
* (1+T§cosze1)1/3 (2.35)

Here the angle o' is defined by ﬂ'.g = cos8' as shown in Figure 2.2.
Also,

Sz - Hzcose1

Fe———r
1+72cos %6’ (2.36)

as defined in Table 2.2. The other parameters are the same as before,
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3. Pattern Factor

The solutions for short magnetic or electric dipoles have been
given in Sections 1 and 2. One'approach to analyze an extended aperture
or linear antenna problem is to integrate the above solutions over the
source distribution as discussed previously. This is an application of
the superposition theorem, and one approximates the source distribution
by an array of short magnetic (or electric) dipoles on the conducting
surface, This is an accurate solution, however, it is rather tedious.

A more efficient approach has been introduced in reference [18]. It is
assumed that the dominant waveguide mode exists across the aperture
(i.e., a cosine distribution along the B dimension and uniform along the
A dimension). The slot can be axially oriented or circumferentially
oriented as shown in Figure 2.3. Notice that any slot with arbitrary
orientation can be resolved into these two orthogonal components.

For the monopole case, a sinusoidal distribution with unit amplitude is
assumed for the current density over the monopole of length L. This
approach is to modify dsm(Q') such that

e

(a) 1in the shadow region:

- kB o~ ~ | |7 KA & A
- .~ 2B | cos (7~ (Ppet')) sin (7~ Ppb') |
Po=P KB~ ~ 2 KA ~ - |
m m — ' —— J
T -G (Ppeth)) , | 2 Pmb | (2.37)
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f\o f‘\o
[] B LA
B
A
(a) (b)

Figure 2.3. A conducting cylinder upon which (a) an axial slot or

and

and

(b) a circumferential slot is mounted.

Py = n'[1-cos(kL)] (2.38)

(b) in the 1it region:

28 ‘ cos (;'B— sine’ (Ppet*))

P —

>

sin (%A- sinei(ﬁm-S'))
")

kB ] ~ - 2 k_A- S A PS
momw 1-(5 sine’ (Ppet')) , I 2 sing’ (Pm‘b
(2.39)
- . cos(kLr‘;'-g)-cos(kL)
Pe =n' a & 2 .
1-(ntes) (2.40)
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a

Here, Pm = unit vector in the direction of magnetic current moment,
A,B are dimensions of the slot, and L is the length of the monopole. It
is noted that L is not to exceed a quarter wavelength for the solutions

to be valid.

C. SCATTERING FROM FLAT PLATES
1. Diffraction by a Wedge

The Uniform Geometrical Theory of Diffraction (UTD) developed by
Kouyoumjian and Pathak [3,4] is sufficiently general to handle the
three dimensional wedge structures. The UTD wedge diffraction
formulations are based on the fundamental Geometrical Theory of
Diffraction (GTD) which was originally developed by Keller and his
associates at the Courant Institute of Mathematical Sciences [1]. The
GTD is a ray optical technique and, therefore, it allows one to gain
substantial physical insight into the significant physical mechanisms
involved in the scattering of flat plates. Accordingly, one is able to
determine the dominant diffraction mechanisms for a given geometry.

The field radiated from a source at 0 and observed at P in the
presence of a perfectly conducting wedge is shown in Figure 2.4, It is
assumed that the source and observation points are sufficiently removed

from the wedge surface so that the contributions from the surface ray
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Figure 2.4, Geometry for three-dimensional wedge diffraction problem.
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field can be neglected. Applying the generalized Fermat's principle,

the distance along the ray path OQcP is a minimum which in terms of edge

diffraction this leads to s'-e = see.

Kouyoumjian and Pathak have shown that the diffracted fields can be
written in a compact way if these fields are written in terms of an
edge-fixed coordinate system [19,20]. This coordinate system is
centered at the diffraction point QE’ and this point is unique for a
given source and observation points. The incident ray diffracts as a

]
cone of rays such that Bo = Bo. The orthogonal unit vectors associated

al

with the edge-fixed coordinate system are defined as Bo = $- X g‘ and

Bo = ¢ X s, where s' is the unit vector in the direction of incidence,

and ; is the unit vector in the direction of diffraction.

The diffracted field Ed can be asymptotically expressed by [3]
=d =i = -jks
E7(s) ~E'(Qg) - D(s,s")A(s)e (2.41)

in which 5(s,s') is the dyadic edge-diffraction coefficient as given by

al a

D=-880D - $'$Dh

0"0"s . (2.42)

The diffraction fields can also be written in a matrix form as

| - - -

ed(s) -0, 0 | {Elqp)

= -jks
e ) o 5 A(s)e (2.43)
| L : : -0y | | E4(Qp)
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Expressions for the scalar diffraction coefficients which are valid at
all points away from the edge (again excluding ¢' = 0 or nn) are [3]
-jn/4 I~
. _ - n/ | w+8" +, -
Ds,h(L’d”¢ ’Bo) © 2nvZnk sing cot (Tzn-)F(kLa™(s7))

- gt

Esn)F(kLa'(B‘)) T { cot (—5)F(kLa*(8%))
l

L

+ cot (

;I

W-B+ -y
+ cot (—zn)F(kLa™(8")

(2.44)

where the minus (-) sign applies to Dg and the plus (+) sign for Dh.
Note that Dg is referred to as the soft scalar diffraction coefficient

for the acoustically soft (Dirichlet) boundary condition at the surface

of the wedge, i.e.,

(E )=0 - (2.45)
Wedge
Dh is referred to as the hard scalar diffraction coefficient for the

acoustically hard (Neumann) boundary condition at the surface of the

wedge, i.e.,

3
Gn )=0 (2.46)
Wedge
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where the 3/an is the derivative along the normal direction to the

boundary surface. The angle parameter 8 is given by

B = ¢ 7 ¢ (2.47)

and

2 2nnNi.gt
=

a*(8%) = 2cos ) (2.48)

where N* are the integers which most nearly satisfy the following

equations:

2mNt - g% = 1 (2.49)
and

2mN~ - g¥ = -n . (2.50)

Note that the B~ terms are associated with the incident field and the
g* terms are associated with the reflected field as shown in Table 2.3,
The wedge angle number (n) is given by

n=2-3", (2.51)

where WA is the wedge angle in radians. The wedge transition function

which is basically a Fresnel integral is given by
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TABLE 2.3
COTANGENT FUNCTIONS FOR THE DYADIC DIFFRACTION COEFFICIENT

The cotangent is singular when value of N at the boundary

¢=¢' —xaSB

cot( Zn—) surface ¢ = 0 is shadowed N*=0
n—(¢-¢)) ¢=¢ +naSB _
cot( 2n surface ¢ = nx is shadowed N=0
[RHiG+e)) é=(2n-1)n—¢.aRB N =
e k 2n ) reflection from surface ¢ = nx
R—(¢+¢)) ¢=n-¢.aRB _
co(( 2n reflection from surface ¢ =0 N"=0
- ® - 2
F(x) = 2j/x edX /j_ e~d™ dr (2.52)
X

The magnitude and phase of this transition function F(x) are shown in

Figure 2.5.

When x is small, F(x) is given by

F(x) ~ [/mx - 2xed™/4 = 2/3 x2 e=in/4] i(n/4 + x) (2.53)

and when x is large, F(x) is given by

i 31 151 751
F(x) ~1+5 -3 33 6 ¢ . - (2.54)
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When 0.3 < x < 5.5, i.e., in between those regions, a linear

interpolation scheme is used such that

(X'Xi)
F(x) = F(x;) + (F(x5,) = F(x:)) m———
(x) = F(x;) + (F(xj41) = F(x;)) (X;77%7) (2.55)
Flxj4p)-Flxs)
where the F(x.), =72 VR and x. can be tabulated. These
¥ \Ai+1"’\i} i

solutions can be used to conveniently compute the transition function.
The L is a distance parameter, which is dependent on the type of

illumination, and is given by

-, o

S sin” B,  for plane wave incidence

ss'
L =] s+s' for cylindrical wave incidence, and
(2.56)
ss' sinzeo
T eaictv for conical and spherical wave incidence.
S+s

The spreading factor A(s), which accounts for the spreading of the power

along the diffracted ray, is given by

1
ars plane, cylindrical and concical wave
incidence, and
A(s) = ,
s
s(s+s') spherical wave incidence .

(2.57)
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2. Diffraction by a Corner

A corner is formed by the intersection of a pair of finite straight
edges. Figure 2.6 shows the corner diffraction geometry. The
diffraction of energy from these edges is based on diffraction from an
infinite straight edge. To compensate for the finiteness of the edges,
a diffraction coefficient associated with the corners of the plate
is needed. An empirical corner diffraction solution proposed by
Burnside and Pathak [21] is based on the asymptotic evaluation of the
radiation integral which employs the equivalent edge currents [6,31]
that would exist in the absence of the corners. The corner diffraction
term is then found by appropriately (but at present empirically)
modifying the asymptotic result for the radiation integral which is
characterized by a saddle point near an endpoint [28]. Even though
this corner diffraction coefficient is still in its development stages,
it has been shown to be very successful in predicting the fields
diffracted by a corner for a number of plate structures. For this
reason, it is discussed here and has been used to obtain some
interesting results.

The corner diffracted fields associated with one corner and one

edge in the near field with spherical wave incidence are given by [21]

E% | l I Zo I J sinBc sinsoC e-jks
co = . ' (cost,-cos5,) F[kLCa(w+BOC-BC)] -
o ° |

(2.58)
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—e-in/4 I_.F(kLa(ts‘)) l La(8™)/a

C.(Q) = —— . | —p—— { -
ﬁ E 27§wfs1n80 COSCE") kLca(vr+Boc Bc)

F(kLa(8")) La(g")/a I ,

e F
i cosfg“) { kLca(”soc'sc)} ‘ ’ (2.60)

The angle parameters Bc and B,. are shown in Figure 2.6. The function

F(x) was defined in the previous section, and

a(8) = 2cos2(8/2)

(2.61)
s'g" SCS
L

-—_— i@
*s" + s sin Bo and Lc = sc+s

for spherical wave incidence. The function Cs,n(Q) is a modified

version of the ordinary edge diffraction coefficient for the half-plane

case (n=2). The modification factor, which is given by

kLca(w+8

- La(8%)/a —,l

oc'Bc{_| (2.62)
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is a heuristic function that ensures that the diffraction coefficient
will not change sign abruptly when it passes through the shadow
boundaries of the edge, i.e., the corner diffracted field will ensure
the continuity of the fields as the edge diffracted field shadow
boundary is crossed. There is also a corner diffraction term associated

with the other edge forming the corner and is found in a similar manner.
D. ELLIPSOID SURFACE PARAMETERS

In applying UTD to electromagnetic diffraction problems, some
elementary knowledge of differential geometry of surfaces is necessary.
The fuselage of an aircraft is modeled as a composite ellipsoid in order
to better approximate general fuselage shapes. Using the ellipsoid

\

geometry shown in Figure 2.7, the surface is defined by

§(B,¢) = R(e,¢)sinecos¢; + R(e,¢)sinesin¢§ + R(e,¢)cose£

(2.63)

or,

&> ~ ’ a -~
R{Vg,V.) = 2 cosVgcosV.x + b cosV sinVy + ¢ sinV,z (2.64)

with

asiné
and tan Vr * bcose - (2.65)

tan Ve =

36




*y
(o]
Q\%\ 2]
S T
b
NN
y

Figure 2.7. Geometry of an ellipsoid.
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The Vr and Ve parameters are introduced because of their convenience in
analyzing elliptic geometries.

Considering a ray which propagates along a geodesic path Q'Q on the
ellipsoid surface as shown in Figure 2.8, the three unit vectors {, 5,
and 5 are, as defined earlier, the geodesic tangent, outward surface
normal, and binormal at any point along the geodesic path. The outward

surface unit normal (n) is obtained from

Ry x R
X
X Vr Ve
ns 55— _ (2.66)
RV X RV
r e
where
>
- 3R - - -
RV =3y = -a sinV,cosV.x - b sinVesinVry + ¢ cosV,z
e e (2.67)
and
->
: R —_ ;
er = 3V, = -a cosVgsinV_ x + b cosVycosV .y . (2.68)
Then,
) be cosZVe cosV, ; + ac coszve sinV, ; + ab cosV, sinVg 2
n

Y4y 3 2 122 4 inc Zpd Z indy J1/2
[bec? cos Vg coscV + accc cos™V, sincV + achc coscV, sin Ve]

cosVg cosV. . cosVg sinV,. [ sinVy .
a x + b yr—ez
= A (2.69)
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Figure 2.8. Geodesic path on an ellipsoid.
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where _ 172

cosVe cosvr 2 cosVe sinvr 2 sinve 2
Al ( a ) +( b )"’(c) . (2.70)

The normal curvatures Kn on the surface are evaluated by introducing the

first and second fundamental forms of differential geometry [17] such

that
2 2
L dvp + 2M dVpdVg + Ndvg
K =
E dVr + 2F dvrdve + dee
L E ﬁ < a > a
= . M =R e« N N=R e N
Vrvr ’ vrve ’ veve
(2.72)
> > > +> > >
E=RV.RV,F=RV.RV ,G‘RV.RV
r r e e e
and ﬁ = -5. It can be shown that
<> LY . ~ -
Rveve = -3 cosve cosVr X =-b cosVe s1'nvr y-=¢ sinve z
-> -~ -
Rvevr = a sinV, sinV. x - b sinV, cosV_ y (2.73)
and
-> -~ -~
ervr = -3 qosve cosVr X =-b cosve sinVr y .
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After some algebraic manipulation, one obtains

c052Ve
L= A
M=0
1

N= 7

= 22,02 . 2 2.2 2
E a“cos Ve sin Vr + b~cos Ve cos Vr

_ 4.2 2 . 2 . 2
F=(a" - b") sin Ve sin Vr (2.74)

_ 2.2 2 2 .2 . 2 2. 2
G = a“sin Ve cos Vr + b"sin Ve sin Vr + c cos Ve .

A pair of orthogonal directions exists for which curvature, K,
assumes maximum and minimum values, i.e., principal directions
represented by two unit vectors ;1 and ;2. The two extreme values of K
corresponding to the above directions are called principal curvatures

denoted by K, and K, [26]. The mean curvature is given by

K1+K2 EN - 2MF + LG
M = 2 = 2(EG - F¢)

K

and the Gaussian curvature is

2.75
LN - M2 (2.75)
Ki K2 €6 - F2 °

Kg
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Thus, the principal curvatures Kj and Kp are given by

~ 2
1,2 % * [ K- Kg . (2.76)

The two principal directions (;1, ;2) are given by

1 | r e
and
- - (2.77)
-2 lsﬁ 1R l
T, =T +
2 Yzl Vr Ve|
where
L-KlE M-KzF
a = s B = ~
KlF - M KZE L
(2.78)

2..17/2 2 1/2
Y1=(E+20F+0G) ,andy2=(BE+23F+G) .

However, it is noticed that K; ~ L/E and Ky ~ N/G within the significant
energy region for most practical cases. That indicates approximate
values of the two principal curvatures, K3 ~ L/E and Kp ~ N/G are good
enough to be used for the geodesics on the ellipsoid surface for our

radiation consideration. Thus, one obtains
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2y

L cos“V,
Ky == =
1 E 2 2 . 2 2. .2 2
Ala“cos Vg sinv, T bcos v, cosV.]
ara2ei 2y . w22y 13-
= (Ala®sin®V_ + b%cos®V_]) (2.79)
and
N
Ko "G =12, 2 2 2. ? 2 2

. 2
Afa®sin Vo cos™V_ + b sin"V, sin"V_ + c"cos Ve] - (2.80)

It islnoticed thatlthe principal radii of curvature are by

Ry = (31 and R, = Ko If 8' denotes the angle between t and T;, then
t = Y cosB' + T, sing', From Euler's theorem, the normal curvature

along the geodesic path is specified by

2 2

K. = KICOS

g B' + Kzsin

8' (2.81)

1
with the radius of curvature, pg, being EE . The torsion term (To)

introduced in Section (B) is given by

T, =T o (2.82)

where the surface torsion is given by

sinzs'
T === (K - Ky) (2.83)

with Ky and K, being defined in Equations (2.79) and (2.80).
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CHAPTER III

FUSELAGE SIMULATION TECHNIQUE

A. INTRODUCTION

For airborne antennas mounted on the fuselage of an aircraft, the
fuselage has been previously modeled as an elliptic cylinder [7,8,9] or
a prolate spheroid [10,11]. However, the elliptic cylinder model could
not predict the pattern close to the nose or tail sectors, where the
deviation from the physical situation becomes very prominent, and the
prolate spheroid model is not general enough to satisfactorily
approximate the wide variety of aircraft cross sectional shapes. The
inadequacy associated with the prolate spheroid results from its
circular cross-section. It has been shown in reference [8] that an
elliptic cross-section is necessary to successfully simulate the wide
variety of aircraft fuselage shapes. In addition, the dominant
structural effect in the elevation plane pattern is the profile of the

aircraft fuselage. Note that the UTD solution in the it region does
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not depend on the surface parameters in that it is aﬁsumed the source is
mounted on an infinite ground plane tangent to the surface at the source
point. On the other hand, the transition and deep-shadow region
solutions are modified due to their dependence upon the surface
parameters. Therefore, the composite ellipsoid fuselage model becomes
necessary and will be discussed in detail in Section III-B. In fact,
the fuselage has a dominant effect on the resulting radiation pattern of
a flush-mounted airborne antenna.

In applying the UTD to antenna radiation problems involving curved
surfaces, a major task is to determine the geodesic paths on the curved
surface. Among the solutions for obtaining the goedesic paths of the
three models, i.e., the cylindrical, prolate spheroidal and ellipsoidal
models, the ellipsoid case is the most involved and complex one. This
is to be expected because the equation describing an ellipsoid can
degenerate into that of a cylinder of a prolate spheroid by using
appropriate simplifications.

According to the generalized Fermat's principle, a ray emanating
from a source, which is located on the surface, follows a geodesic path
on the surface and continually sheds energy into the shadow region. As
the energy flows around the surface, it is continuously diffracted along
the geodesic tangent toward the field point such that the significant
effect of the surface is associated with a region around the source. In
fact, for an ellipsoid, the significant portion of the surface, which is

associated with the dominant energy, may look as shown in Figure 3.1.
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Figure 3.1,

The region of significant energy flow from an antenna
mounted on an ellipsoid.
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Note that this region can be specified by following the various
geodesic paths until the radiation level along a given path becomes
jnsignificant, i.e., more than 40 dB below the source magnitude. With
this in mind, it is clear that one could represent the ellipsoid by a
structure which simulates the elliptic cross-section completely;
however, the profile could be approximated by a simpler shape since the
significant energy region does not cover a large portion of the phofiTe
shape. An elliptic cone model is employed here to simulate the
ellipsoid which in turn can be used to model a fuselage. This elliptic
cone model is illustrated in Figure 3.2(a) for a source located near one
end of the ellipsoid. Note that if the source is placed at the
mid-section of the ellipsoid, the elliptic cone actually becomes a right
elliptic cylinder.

Since the elliptic cone is a developed surface, one can unfold the
elliptic cone such that a planar structure results. Then the
geodesics associated with the elliptic cone are straight lines on this
planar structure. In order to allow for a geodesic solution between the
simplicity of the elliptic cone and the rigor of the ellipsoid, one can
perturb the elliptic cone by bending it along its generator as
illustrated in Figure 3.2(b). In that a perturbation technique is
employed, the geodesic paths for the elliptic cone are simply modified
such that the solution for the ellipsoid is basically straight-forward.

It is obvious that one cannot use this perturbation technique if
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(b) Elliptic cone perturbation model.

Figure 3.2. Elliptic cone perturbation.
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significant energy propagates far away from the source. However, as
mentioned previously, the energy which propagates great distances along
the ellipsoid surface becomes insignificant in magnitude such that one
need not solve for the true geodesic paths outside the significant
region shown in Figure 3.2(b). The simplicity of these perturbed
geodesic paths allows one to very efficiently determine the significant
ray paths on the ellipsoid. Thus, the efficient numerical technique,
which uses an elliptic cylinder and elliptic cone perturbation method to
find the creeping wave geodesic paths on an ellipsoid [13,14,22,23],
will be discussed and verified by comparing it with the exact solution
in Section III-C.

It is obvious that if one wishes to simulate an aircraft, one must
allow vertical or horizontal stabilizers, etc. to attach to the
fuselage. The algorithm to find the curved junction edge resulting from

attaching these plates to the ellipsoid is discussed in Section III-D.
B. COMPQOSITE ELLIPSOID MODEL

The composite ellipsoid is used to model the general aircraft
fuselage in this study. The composite ellipspoid is constructed from
two ellipsoid sections positioned back to back and connected together
such that its surface is continuous and smooth at the cross-section of
the source location as shown in Figure 3.3. The composite ellipsoid
semi-major/minor axes are defined by ag, bg, Co and do as shown in

Figure 3.3(a) and the source location is defined by zg and ¢g. It is
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(a) Composite ellipsoid model.
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R | — I b4

VLS
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e

(b) Composite ellipsoid geometry,

Figure 3.3. Composite ellipsoid.
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assumed here that both the right and left ellipsoid coordinate systems
are coincident., Then, the right side ellipsoid semi-major/minor axes

and the source location are defined as

(abgsCeaVagaVrg) = (255055C05VagsVrg) (3.1)
where

y A fi ) 3, sin¢s

es ~ sin Co and VI‘S = 50 cos¢s o (3.2)

Now, one needs to define the parameters for the left side ellipsoid in
order to complete the composition. Since the surface of the composite
ellipsoid is continuous and smooth at the connection junction, the
geodesic tangents of both the right and left ellipsoids should be
continuous at the source location. For simplicity, let us consider the

connection in the the x-z plane first. Thus,

- al
te(af,bf,Cf’veS) = te(af’beCvaes) (3.3)

with

-x af sinVog *+ 2 Cf¢ coSVqq

t (8¢sbesCe,V ) = 172 (3.4)
el frufrf Tes [ai sinz\fes + c% coszves]

and
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-~ ] 1 a ] [}
-X af sinVes + Z cg cosVyg

al t [ ] ] [}

t(a b C,V )= 1 i 1 1 3.5

eldfsPfsCralog 2 . 2 2 172 . (3.5)
[af sin®V . + ¢ cos Ves]

From Equations (3.3) - (3.5) one obtains

a g .
Totan Voo =TTtan Vo (3.6)
£ f
with
L
Ce = dy * 24y (3.7)

where zgn is the distance between the right and left ellipsoid
coordinate origins as shown in Figure 3.3(b). Since the rim of the
elliptic cross section at the source location is common to both the

right and left ellipsoids, one can obtain the following relationships;

s = @ cosveS = ag cosVes (3.8)

L
1]

and

o
i

[} 1
b¢ °°Sves = bf cosVes . (3.9)
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From Figure 3.3(b), one also finds that
) [}
Ce sinVes =2, - Zgy o (3.10)
Now, from Equations (3.7) and (3.10) one obtains

[} '
Zop(sinVyo + 1) =z, - dj sinV ’ (3.11)
i.e.,

1
Zg - dy sinVgg
Zsh = T 1 + sinv. . (3.12)
es

After manipulation of Equations (3.3) - (3.12), the parameters needed to

define the left ellipsoid are given by

-1
. 2 l__ co cos VeS _} l
V__ = sin +1 3.13
es l |__tanves(do + zs) _ ‘ ’ ( )
' 3y COS Vggq
3¢ = Tcos V ’ (3.14)
es

b . bg cos Vgg :

f 7 cos V > , (3.15)

]
and ¢¢ was already given in Equation (3.7).

53




The smoothness through the whole elliptic rim at the connecting
junction can be easily checked by applying Equations (3.6), (3.7),
(3.14) and (3.15) to the x, y, and z components of Ee and E, which will

be given in Equations (3.24) and (3.26), respectively, for an arbitrary
value of V.. It is also noted that the two surfaces join together at
the source location so creeping waves that propagate to the right side
from the source will follow the geodesics on the right ellipsoid surface
and those that propagate to the left side from the source will follow

the geodesics on the left ellipsoid surface.
C. NUMERICAL TECHNIQUES FOR THE GEODESIC CALCULATION OF AN ELLIPSOID

It is seen that, for an antenna mounted on an ellipsoid, the
geodesic paths associated with the UTD solution in the shadow region are
extremely complex. An elaborate method employing calculus of variations
to calculate the geodesic paths, which is very inefficient, is presented
in Appendix A. An efficient numerical approach is examined in this
section with the ellipsoid simulated by an elliptic cone or elliptic
cylinder model. Since the elliptic cone and elliptic cylinder are

developed surfaces, geodesics are efficiently obtained.
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1. Surface Geodesics

The geodesics on the e11iptfc cylinder, elliptic cone and ellipsoid

are presented in this section.

(a) Elliptic Cylinder Case:

The elliptic cylinder geometry used for this study is shown in
Figure 3.4(a). Since the elliptic cylinder is a developed surface, the
geodesic path Q'Q is a straight line on the unfolded planar surface as

shown in Figure 3.4(b). Thus, the geodesic unit tangent £ is given by

t=V cosy + ; siny (3.16)

x(-a sinV,) + yb cosVp

(azsinzvr + bzcos2

r

>

172 . (3.17)
Vr)

It is noticed that Gr and ; are the two principal directions on the

elliptic cylinder surface. For a given geodesic Q'Q, one can see that vy

is a constant along the geodesic path.
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(b) UNFOLDED PLANAR SURFACE

Figure 3.4, Geodesic path on a developed elliptic cylinder.
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(b) Elliptic Cone Case:

Consider a ray which propagates along a geodesic path U'Q on the
elliptic cone surface as shown iﬁ Figure 3.5(a). It is a straight
line on the unfolded planar surface as shown in Figure 3.5(b). It is
noticed that €e and fl are the two principal directions on the surface.

The goedesic unit tangent { is, then, represented by

t = t, cosg + ty sing (3.18)
where

ty = -xq siné + z coss (3.19)

- xa cosVp + yb' sinV.

X

= R Bt 3.20
/a'zcoszvr + b's1‘n2vr ( )

and & is the half cone angle as shown in Figure 3.5(a). Note that 8
denotes the angle between €1 and the geodesic unit tangent { and is no

longer a constant along the geodesic path Q'Q.
(c) Ellipsoid Case:

Recall that the ellipsoid surface is defined by

<> -~ ~ -
R(ve’vr) = 3 cosve cosvrx +b cosVe s1nVry +c s1nVez (3.21)

with
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Figure 3.5. Geodesic path on a developed elliptic cone.
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cot ©

tan V_ =
e —sin2¢ cos2¢- 1/2 (3.22)
C b2 * @z _
and
a siné
tan Vr = 5 cos¢ R (3.23)

As shown in Figures 3.6(a) and (b), the unit vectors in the principal

directions can be represented by

3R
R We -xa sinVg cosV, - yb sinVg sinVp + zc cosVq (3.24)
t, = = -
& R 172
R [azsinzv cos?V_+b2sin?V_siny_+c2cos?y ]
oy e r e r e
e
and
f et xn
= -xa sinvr(bzsinzve + czcoszve) + yb cosv,.(azsinzve + czcoszve)
22,52 2. .2 2.:.2 2. .2 1/2
[a“b®sin V +ccos Ve(a sinV_+b“cos Vr)]
+ Ec(bz-az) sinV. cosV. sinVy cosVy
2062y vein2y (a2eoc2y wn2einly 11172 3.5
[c®cosV +sin®V (acos®V +bsin®V )] (3.25)
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Figure 3.6. Definition of the unit vectors on an ellipsoid.,



with

-~ tr X te

Itr x tol

xbc cosVy cosV. + yac cosVg sinV. + zab sinV,

172
[a b%sin V + czcoszv (a s1n2V + b2cos?y Ny

(3.26)

and

>
R
3V

If 8 denotes the angle between t1 and the geodesic unit tangent €, then

-Xxa cosVg sinVp. + yb cosV, cosV,

172, 3.27
[a2c052Ve sinzvr + b2c052Ve coszvr] ( )

t is represented by

t = tl CosB + t, sing (3.28)

which is identical to the form used for the elliptic cylinder and
elliptic cone geodesics. This suggests that one might be able to
develop a perturbation solution which gives a simplified form for 8 on

an ellipsoid using the elliptic cylinder or elliptic cone expressions

for B,
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2. Elliptic Cylinder Perturbation

In order to solve for the geodesics on an ellipsoid, the elliptic
cylinder perturbation technique }s used when the source is located at or
near 6g = 90°, Recalling that y is a constant along a given geodesic
Path on an elliptic cylinder, one obtains a geodesic equation which is
given by

Se
tan v =37 . (3.29)

The elliptic cross-section in the Xe - Zz plane is described by

2 2 2...2
Xg = j a“cos Vr + b%sin Vr cosve (3.30)

and

z=c s1‘nVe . (3.31)

The arc length in the te direction is given by

Vo dxe 2 dz 2 '
e= (@) + (@r) av

o 1 112

Ve ]
- 2 2 2 2 2.2 .
= { {ccos Vo + (a“cos V. + b%sinv.) sin Ve} v, .

(3.32)
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The elliptic cross-section in the x-y plane is described by

»
]

a cosVeS cosVr , and ’ (3.33)

~«<
[}

b cosV, sinV, . (3.34)

The arc length in the t, direction is given by

S = J CEV:) + (D) vy
re r
Vr 2. 2" L p2. 2,12
= J cosV . {a“sin“V_ + bcos V.l v, (3.35)
s
Thus, the geodesic equation becomes
Vo . L 172,
2.2 2.2 . 2 2.2
g [(acos®V. + b%sin®V ) sin Vo + cfcosV, ] dv,
tany = .
v ' ' - 172,
Jr [azcoszvessinzvr + bzcoszvescoszvr] dv,.
s

(3.36)

Assuming the diffraction point is located at Q (a cosV, cosV,,
b cosVe sinvr, c sinve) and the field point at P (Rt sinet €osé, ,

Ry sine, sing,, Ry cos8,), then at the diffraction point Q, the
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radiation direction (et,¢t) should coincide with the geodesic tangent {

given in Equation (3.28). Thus, the radiation direction is given by

ct)
]

where

and

Note that

xtx + yty + ztZ

t1 cosy + te siny

a
s1net COS¢, = E;' cosVe cosVr
D
b
s1net sing, - Rt cosVe cosVr
D
c
coset “R s1nVe
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(3.38)

(3.39)

(3.40)



(=
N
]

. a 2 . .
= (sine, cose, - Ry CosVg cosV. )€ + (sing, sing,

b v 32 LY
- Rg cosVe sinV )% + (coss, - Ry sinVy)

. a b . :
1 - 2 [sing, cosv, (Rg cosé, cosv_ + Rg sine, sinv))
c 2 al 2 b2 2
*+ Ry cos®, SinVe] + [cos Vo (ﬁz'cos V. + Eg sin®V.)

Cz_z
+ ig sin Ve] (3.41)

and Ee and {1 were given in Equations (3.24) and (3.25), respectively.

Equating the x-, y-, and z- cmponents, respectively, one obtains

. 2 .2 2.2
- a s1nvr cosy(b“sin Ve + c“cos Ve)

t = 172
X [azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]

172
[c2c052Ve + sinzve(azcoszvr + bzsinzvr)]

a sinve cosVr siny

2 2 2 .2 ]112

2 . 2 2 .
[c“cos Ve + sinVy(acos®V, + b%sin®V )

a
sinet cos¢t -'E: cosve cosvr

D ’ (3.42)
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2 2

b cosVr cosv(azsin V +C c052V )

t = 172
Y [a®b%sin V + c2c0s2V (a s1n2V + b2cos?y ]

1

172
[czcoszve + sinzve(azcoszvr + bzsinzvr)]

b smVe s1nVr siny

172
[c2c052Ve + sinzve(azcoszvr + bzsinzvr)]

b
s1net s1n¢t - E;‘ cosve s1nVr

D

and

c(bz-az)sinv cosV sinv cosv cosy

t, = 172
z [a2b251nzv + czcoszv (a s1n2V + b2cos?y )]

1

2.2 . 2 2 2 2...2 172
[ccos Vo + sin“Vy(a"cos“V, + bsin Vr)]

c cosVe siny

+ 172
[czcoszve + sinzve(azcoszvr + bzsinzvr)]
c 3
coset - Rt s1nVe
= D .
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Now, [txb cosV, + tya sinVr] c cosV, + t, ab sinV, yields

H(et) ¢t) Ves v[-’ Rt)

= abs1nve coset + csinet

abe
"R 0 -

Next, from Equations (3.42) and (3.43) one obtains

ty (-b sin Vr) + ty (a cos Vr):

2 2 172

ab cosY{sinZVe (bzsinzvr +a coszvr) + ¢ coszve}

cosve (as1n¢t s1nvr + bcos¢t cosvr)

{azbzsinzve + czcos‘Ve (a‘sinzvr + bzcoszvr)}“2

1
= ﬁ'{acosvr sing, sine, - bsinV_ sine, cose,} .

Accordingly,

172

cosy = [azbzsinzve + czcoszve(azsin2Vr+b2c052Vr)]

singg (acosVpsingy-bsinV.cos )
Dab{sincV (besinéV +alcos?V ) + cécoseV }1/2 -
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Substituting Equation (3.47) into Equation (3.44), one obtains

2_.2 s ) . .
[c(b°-a®)sinV_ cosV. sinV, cosV, sine,

- (a cosVr sin¢t -b sinVr cos¢t)

Se
+ ¢ cosV, S, sing, (a cosV,, sin4>t - b sinV, cos¢t)

{a®bsin v, + czcoszve(azsinzvr + bzcoszvr)}1"]

ab[c2c052Ve + sinzve(azcoszvr + bzsinzvr)]

c_ .
cos 8, - Ry sin Vo

. (3.48)
Thus, one finds that

G(et’¢t've’vr’Rt) =S, c(bz-az) sinVr cosV,. sinV, cosVy sinet

- (a cosVr sin¢t -b s1‘nvr cos¢t)

1/2
+ Sq € cosV, [azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]

. sinet (a cosV,. sin¢t -b sinvr cos¢t)

- S, ab cos®, [czcoszve + sinzve(azcoszvr + bzsinzvr)]

Sr

*+ Ry abe sinvg [czcoszve + sinz\'e(azcoszvr + bzsinzvr)]

]
o
°

(3.49)
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Note that S, and S, were given in Equations (3.32) and (3.35),
respectively.

Provided that one has obtairied a diffraction point (Vg, Vp) for a
receiver location (Ry,8t,$t), @ numerical technique can now be developed
from Equations (3.45) and (3.49) to solve for (Vg + AVg, Vp + AV.)
associated with a new receiver location (Ry + ARy, 8¢ + A8, ¢ + Adt).
Assuming that the ith set of (Res Bt s Ve Vp) is first known to
satisfy H; = Gj = 0, or at least approximately so, the next set
(R + ORy, B + A8, ¢y + Ady, Vo + AVp, Vp + AV() is obtained by

enforcing Hij41 = Gy41 = 0, such that

Hi+1 = Hi + HR ARt + He Aet + H¢ A¢t +
t t t
H, AV. + H, aV
Ve e Vr r
= 0 (3.50)
and
G, =G, + G, AR, + G, A8, + G, A, +
i+l i Rt t Bt t ¢t t

+

Gy avV_ + G, AV
Ve e Vr r

(3.51)
=0 .
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In matrix form, these equations are satisfied

—Hy ”vr-l Tav 71 TRy - HRtARt - Hg 88, - H

Ad,. ™
t 6|

-G; - G, AR, - G, A8, - G, A}
e r||r||1Rtt ett ¢tt

" (3.52)

Note that the partial derivatives are given by the following:

HVe = ab cosVecoset -C sinvesinet(asimtsinvr + bcos¢tcosVr)
(3.53)
HVr = ¢ cosV, sing (asin¢tcosvr - becos¢,sinV ) (3.54)
Het = -ab sinVesinet +cC cosvecoset(asincptsinvr + bcos¢tcosvr)
(3.55)
H¢t = ¢ cosV sing, (a cos¢ sinV. - b sing.cosVy) (3.56)
HR = 2 3.57
Rt abc/Rt ( )
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2

e oan2 2y 2y s
Gve =S, c(b®=a%) s1nvrcosvr(cos Ve-sin Ve)
. sinet(a cosV, sin¢t -b sinVr cos¢t)
dSe 172
+

2,2.. 2 2...2 2.:.2 2...2
AV, © cosV [aD sin“Vy + cCcosV, (a%sin®V  + bcos®V )]

s1net(a cosvr sin¢t -b sinV, cos¢t)

-+

Se c s1net(a cos\fr sin¢t -b s1nVr cos¢t)sinve

2,2 2 . 2 2.2 2_: 2 2...2
a~b“(cos Ve-s1n ve) - 2c“cos Ve(a sin Vr + b%cos Vr)

172
[azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]

+

2 Sr abcoset cosVe s1'nVe (c2-a2c052Vr - bzsinzvr)

Sp

+ R¢ abe cosve[c2 c052Ve + sinzve(azcoszvr + bzsinzvr)
. 2 2 2 2 .2 2
+ 2sin"V (a%cos™V, + b7sin"V_ - ¢ )]
(3.58)
where

dSe 172,
- {czcoszve + (azcoszvr + bzsinzvr)sinzve}

e (3.59)

7




and
dSp 2 2
y { s sinV.cosV. + S (cos“V, - sin Vr)}

o
]

2 2. . _ . .
c(b®-a%) s1nVe cosVy sing, (a cosV. sing, - b sinV, cos¢t)

2 .2, _. . .
- Sr c(b™-a") sinV. cosV. sinV, cosV, sine,

(a sinVr s1‘n¢t + b cosVr cos¢t) +

dSe 2.2 . 2

av,. ¢ cosVy[a“dsin 2

+

172

2 2. 2 2...2
Vg *+ cTcos®V, (a%sin“V  + bcosV )]

s1net(a cosVr sing, - b s1nvr cos¢t)

3.3 2 .2\ . . . .
Sec cos Ve(a -b )51nvrcosvrs1net(acosvrs1n¢t-bs1nvrcos¢t)

172
[azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]

2.2

1/2
Se ¢ cosV,[a"b

4 2 2 2.2 2 2
sin“Vy +ccos V (a"sin™V, + b cos Vr)]

sinet(a sinV, sin¢t + b cosV, cos¢t)

ds, )
qV, ab cose, [c cos

.

2 2

. 2. .2 2.: 2
Vg + sinV (a%cosV, + b%sinV)]

2 .2 . 2 X
ZSr ab(a"-b") cos®, sin”V, cosV sinV_

<+

dSp abe
t A Ry sinve[czcoszve + sinzve(azcoszvr + bzsinzvr)]

25,

+ p;— abc sin3

2 .2 .
Ve(b -a%) cosvrsmvr (3.60)

12




1/2
AV, = cosVeg {azsinzvr + b?coszvr} , (3.61)
and
2 .2\ o : 2y
dSe }e (b=a%) s1nVrcosVrs1n Ve .
av. = : 172 dv
T o [c2c052Ve + (a2c052Vr + bzsinzvr)sinzve] €
(3.62)
and
G, =S c(bz-az) sinV_cosV_sinV_cosV_cos®
et r r r e e t
- (a cosV, sin¢t -b sinvr cos¢t)
1/2
*S, ¢ cosve[azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]
. coset(a cosV,. sin¢t - b sinV, cos¢t)
+ S, absinet[czcoszve + sinzve(azcoszvr + bzsinzvr)]
(3.63)
G, =8 c(bz-az) sinV _cosV_sinV_cosV_sin®
¢t r r r e e t

s (a cosV,. cos¢, - b sinV, sin¢t)

2,2 .2 2_ 2 2

b sin Ve + € ¢cos 2 2

1/
+ S, ¢ cosVe[a Ve(azsin Vo + b coszvr)]

. sinet(a cosV,. cos¢, + b sinVr sin¢t) (3.64)
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and

Sr
- ; 2.,¢2 2 2002 2502
=R abc sinV, [ctcos Ve * sinV (acos®V + bsincV )] .

G
Re

(3.65)

It is seen that one can solve for (Ave,Avr), for a known (ARt,AGt,A¢t),

ues:n

el i~
“o iy

mine the initial diffraction point
(Ve,Vr) for a given receiver location (Rt,et,¢t), one can always assume
a diffraction point at the source (D’Vrs) with the radiation direction
(ef,¢f = tn/2) with respect to the source coordinate system (EN’gr’ge)
and gradually add increments (ARt,Aet,A¢t) until the desired receiver
Tocation (Rt,et,¢t) is reached as depicted in Figure 3.7.

In this process one can construct a cone where the rim of the cone
is traced out by the receiver trajectory with the tip of the cone at the

source point Q' and the cone axis aligned with Ee' The half cone angle

ef is given by

| - > 2 - > 2 !
-1 | jltN‘POS| + |trPos] (3.66)
ef = taﬂ - L d
( te*Pos
with
> > +>
Pos = Pg - Ps (3.67)
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PROJECTION TO )
( fx — fr PLANE

Figure 3.7. Illustration of the diffraction point finding for a
given receiver ‘location.
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and ¢f(N) is given by

PS <> .
tr+Pos .

¢¢(N) = tan 1 T (3.68)
n*Pos

Note that P(1) denotes the position vector of the assumed observation
point tangential to the source, i.e., (ef,¢f = n/2) with respect

to (EN’gr’ge) and P(N) denotes the position vector of the actual
observation point tangential to the diffraction point Q, i.e.,

(ef,¢f + NA¢f) with respect to (£N’€r’€e) or (et,¢t) with respect to
(;,§,£). It is observed that there exists a one-to-one correspondence
between the points (from P(1) to P(N)) on the rim of the cone and the

points on the ellipsoid surface.

After the initial diffraction point is identified by (Va,Vp)svy,
one knows the geodesic path as defined by the geodesic equation which
was given by

Se

tan y = 3 (3.69)
and y is a constant along a given geodesic path on the perturbed
elliptic cylinder. Such a numerical approach is illustrated in Figure

3.8. One need not trace out the complete geodesic path from the source

Tocation to the diffraction point for each new radiation direction. As
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shown in Figure 3.8, the diffraction point (Vg + AVg, V. + AV.) for the
next receiver location is determined from (V,V.), using Equation
(3.52), if (AR¢,A8;,Ad;) is small which is the case when a complete
radiation pattern is computed.

After the geodesic path is determined, various other parameters
associated with actual field calculations must be found. the Fock

parameter E of Equation (2.15) is given

v
-/ LR AL LI 2

1

where the integral is evaluated along the geodesic path. Note that ¢ is
the arc length along the geodesic and given by either of the following

equations;

Se Sr
%= SThy or 2 = osy . (3.71)
Accordingly,
dg = . (azcoszv + bzsinzv ) sinzv + czcoszv dv
siny r r e e e
(3.72)
or
dg = -3-' azcoszv sinzv + bzcoszv coszv dv
cosy es r es r r (3.73)
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and the integration can be rewritten as

1 v, 1 kpgl/3,
tccosy | T ()
r
3
2 .2 L2, 2 2 2, '
j; cos™Vg sin"V  + b%cos™V,  cos™V  dV, (3.74)
or
1 Ve 1 kog /3
E=S‘iny({ T‘E(T)
1} ] )
. /(a2c052Vr + bzsinzvr) sin2Ve + c2c052Ve dVg (3.75)

where °g = 1/(K1coszy + Kzsinzy) and Kl’ K2 are two principal curvatures

given in Equations (2.79) and (2.80), respectively.

Next, the ray divergence factor Ydyo(Q)7d9(Q) is defined as

the change in the separation of adjacent surface rays as shown in
Figure 3.9. Since the ellipsoid simulating the aircraft fuselage will
be long and slender, it is assumed that the ray divergence factor is

unity in the analysis.

This completes the elliptic cylinder perturbtion solution for an

antenna mounted on the mid-section of the ellipsoid.
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Figure 3.9. Illustration of the divergence factor (v’dwo7a¢) terms.
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3. Elliptic Cone Perturbation

When the source is not located at or near the mid-section (es=90°),
the elliptic cone perturbation method is used. The geodesic path on an
ellipsoid using the elliptic cone perturbation method is shown in Figure
3.10(a) and the associated unfolded surface is shown in Figure 3.10(b).
If v and B denote the angle between E and €1 at Q' and Q, respectively,
it was shown in Section III-C.1 that they are not the same as in the

elliptic cylinder case. In fact,

B=vy - a. (3.76)

The calculation of a will be discussed in detail in this section.

Recall that the ellipsoid surface is defined by

EY - ~ -
R(Vg,V,) = a cosV, cosV x + b cosV, sinVy + ¢ sinV 2z (3.77)

>
and the tangent vector to is defined by

>
> aR - - . . -
te = 37; = -xa sinve cosVr - yb s1nVe s1nvr + zc cosve . (3.78)

Therefore, one can show that
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DIFFRACTION
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f

Y

.6‘“' ¢ \e

\ T Y/
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PERTURBED ELLIPTIC CONE

(a). Geodesic path on the perturbed elliptic cone.

(b). Geodesic path on a developed elliptic cone.

Figure 3.10, Illustration of the elliptic cone perturbation method.
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x-a cosVeg COSV.o y-b cosVgg sinVpg  2-c sinVgg
-a sinVgg COSVpg = =b sinVgg SINVpg = C cOSVgg . (3.79)

From Figure 3.11, z = ¢ cscVag for x = y = 0; thus one obtains

_r.2...2 2 2 2 . 2
re = [a%cos®V ¢ cos“V o + bcos™Vo sinV
5 172
+ (c sinV, - ¢ escVy ) ]
= [A2 2 2 .2 2 4 1/2
= [ag cos®V ¢ + by sin®V o + zg cot V(] (3.80)
where

z, = ¢ sinVg
ag = a cosV,g
by = b cosV,o .

From Figures 3.12(a) and (b),

> - -
2= xa  cosV, +y b sinV (3.81)
and
>
a2 - . -
e = - x ag sinV  +y by cosV, . (3.82)
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Figure 3.11. Elliptic profile.
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(a). Elliptic cone model.

(b). Unfolded planar surface of the elliptic cone.

Figure 3.12. Illustration of the elliptic cone.
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>
From the previous calculation, one can define a new vector U as

follows:

> +»
JEY) aR
U= (3v;) = (3vg)

_ . _ . . N
(- x a s1nvescosvr y bsinV sinV, + z ¢ cosves)

e (- x a. sinVr +y bscosvr)
i 2. 2 2 2 .2, .2 22, |2,
[a®sin®V g cos®V  + bTsin®V  sinV + ccos®V
1/2

2.2 2 2
- [agsin®V. + becosV.]

+ .
X bS c cosV.cosV, +y ag ¢ cosVg sinV + z a; b sinV ¢

2.2 2.2y 112
[agsinV, + becos®V ]

172
. [azsinzves coszvr + bzsinzvessinzvr + czcoszves]

86
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<>
The magnitude of vector U becomes

|U| = | aVr ll 3vz;' sing, = singp .

From Figure 3.12(b), one obtains the following equation;

FY
ds.|U|
da = —% . (3.85)

Therefore, a is given by

t ] 1/2 '
cosveslazbzsin Vos + c2c052Ves . (azsinzvr + bzcoszvr)] dvp

2enel) i ) 2 2yt Zeinlyty 1172
r|cécos Veg + sinfV, (afcoseVy + besin Vr)]

2

v [agbg + 22 cos4v (a s1n2V + bzcoszV,.)]l/2
r [
81 2 2' 27| 2 4 dV Py
Vrs ascos Vr + bss1n Vr + zscot Ves r
(3.86)
where
_ 1.2 2 2.2 2. .4 1/2
r = [ascos Vo + bgsin®V, + zccot Ves] . (3.87)
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To obtain a diffraction point (Ve’vr) for a radiation direction (6,,¢,),
one follows the same idea as that of the elliptic cylinder perturbation
solution.

At the diffraction point Q, the radiation direction (et,¢t) should

coincide with the geodesic tangent f. Thus,

t=x tx +y ty + 2 tZ
=tycos B+t sing | : (3.88)
Note that tx’ ty, tz, te, and tl were already given in the Equations

(3.38)-(3.40) and (3.24) and (3.25), respectively. Equating the x-, y-,

and z-components, respectively, one obtains

2.:.2 2 .2

-a sinVr cosp(bsin ve + c“cos

V)

1/2
[azbzsinzve + czcoszve(azsinzvr + bzcoszvr)]

1

2 2

2 2, .2 2 . 20 \11/2
[ccos Vo + sin“V (a"cos"V + bsin Vr)]

as1nVe cosVr sing

2 2 . 2 2 2 2. .2 1/2
[c7cos“V, + sin Vo(a%cos®V + b%sin Vr)]
a
sinetcos¢t - E;‘ cosVe cosVr
= D ’ (3.89)
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2

b cosVr coss(azsinzve +c coszve)

172
[azbzsinzve + czcoszv-e(azsinzvr + bzcoszvr)]

1

[czcoszve + sinzve(azcoszvr + bzsinZVr.)]“2

b s1nVe sin\fr sing

- 2

172
[c coszve + sin? 2 25in2 )]

2 .
Ve(a cos Vr + b%sin Vr

b
s1netcos¢t - §;‘ cosVe s1nvr

D »

and

2 2y .
c(b® - a%) s1nVr cosvr cosVe cosB

1/2
[azbzsin2 2coszve(azsinzvr + bleos?v )]

+
Ve ¢ p)

2 2 2., 22 2. 2 \11/2
[ccos Vo + sin“V (a%cos™V, + b7sin Vr)]

c cosVe sing

+
2 2 . 2 2 2 2. .2 172
[cTcos™V, + sin"V (a"cos"V_ + b7sin Vr)]
c
cos®, - K s1nVe
= D °

89
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From Figure 3.10(b), one can show that the perturbed geodesic path can

be expressed as follows:

r. cos(y=-a) = r_ cosy

e s
where
172
r = (a?coszv_ﬁ-+ b?sinzvq_ + z?cot4v,,]
s % rs s s 5 es’
_ (.2 2 2 .2 2 .4 1/2
re = (accos“v. + besin®v, + z cot Ves) - Sy
and
') ' 172
Ve 2 2 22 2. 20\ '
Se = J [c"cos Vg + (a“cos™V, + bTsin Vr)s1n Ve] v, .

es

Now, [tx(-b sinV ) + t, 2 cosvr] yields

1/2
ab cos(y-a) [czcoszve + sinzve (a2c052Vr + bzsinzvr)]

[azﬁzsinzve + czcoszve (absincV _ + bzcoszvr)]l/2

sin 8y (acosV. singy - bsinVy cosé)

- D

90

(3.92)

o~
“w
O
w

S

(3.94)

(3.95)

(3.96)



Next, [(t, b cosV  + t, a sinV. ) c cosVg +t ab sinV,] yields

absinVe cOSOy + csinfy cosVy (asingysinV. + bcosépcosVy)
D

-TRy =0 . (3.97)

Three functions can, then, be constructed from Equations (3.92), (3.96),

and (3.97) as follows:

'F(Ve,vr,y) = recos(y-a) - rgcosy = 0 (3.98)

e Vpo Y)

G(Ry» B &ps V
= Dabcos(y-a)[czcoszve + Sinzve(azcoszvr + bzsinzvr)] 1/2
- sinet (as1'n¢t cosV, - bcos ¢, sinvr)
. [a2b25in2Ve + c2cosVg (22sinvy. + bZcos?y)]l/2
= 0 (3.99)
and
H(Rps B¢y ops Voo Vp)

= absinV, cos@, + csing, cosVy (asin¢t sinV, + bcos ¢y, cosvr)

-® =0 . (3.100)
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Provided that one has obtained a diffraction point (Ve, Vr) for a
receiver location (Rt’ 8y 5 ¢t), a numerical technique can now be
developed from Equations (3.90),. (3.99), and (3.100) to solve for

(Ve + Ave, Vr + Avr) associated with a new receiver location (Rt + ARt’

th

6, + A6, ¢ + A¢t). Assuming that the i~ set of (Rt’ Bys by Vos Vr)

is first known to satisfy Fi = Hi = Gi = 0, or at least approximately

so, the next set (R, + AR, 8, + A8, ¢, + Aby, Vg + AVg, Vo + AV() is

obtained by enforcing Fi+1 = Hi+1 = Gi+1 = 0, such that

Fi+1 = Fi + FVeAVe + erAvr + FYAY =0 , (3.101)
iy © Gi + GV aVy + Gv AV + GYAY
e r
+ G, A8, + G, A¢, + Gy AR, =0 , 3.102
5, 2% * B¢, 0% * PR Mt ( )
and

Hi,y = H. + H, AV_ + H, aV_ + H, A®

i+l i Ve e Vr r et t
+ H¢tA¢t + HRtARt =0 . (3.103)
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In matrix form, these equations are satisfied by

F, Fy, F AV - -F,
Ve Vr Y e i
G G G Av _ | -G; - G, A8, - G, A4, - Gp AR
Ve Vr Y r = 1 et t ¢t t Rt t
H H 0 Ay -H. - H, A8, - H, A¢, = Hy AR .
Ve Vr i et t ¢y t Rt t
(3.104)

Note that the partial derivations are given by the following:

1/2
FV = -[c2c052V +(a2coszv +bzsinzv )sinzv 17 cos{y-a) , (3.105)
o e r r e
9 2 c052VeS
Fy, = (b -a") sinV_cosV 77 PV 2ot B 172
Ve r r | (afcoscV +bgsincV +zgcot Vo)
' -
v sinzv '
i e — s - ' dv cos{y-a)
g [czcosz\/e+(a‘cosfvr+5251n‘Vr)sinZVe]”2 e
es _

1/72
]

. 2,.2,92_ .4 2.:.2 2...2
res1n(y-a)[asbs+Zscot Ves (ass1n V.+bccos Vr)

Zc0s2V_+blsinlV_+Z2cot?
aZcos?V +bZsin?V +2Zcot™ (3.106)
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F_=r_siny-r_sin (y-a) R (3.107)

Y S e
and
Dab(azcoszvr+bzsinzvr-c2 sinVgcosV, cos(y-a)
e L e \ v r < r[.‘l i e‘]

sinet(asindstcosvr-bcos¢tsinvr)[a2b2-(azsin2Vr+b2coszvr)czjsinVecosVe

[(5251ﬁzvr+b2coézvr)czcoézVe+a2bzsinZVe]lfz

abcos(y-a) 5 9

1/2
+ — 5 [c%cos Ve+(a2cos 2

2 2. .2
ve]

V.+bTsin Vr)sin

c2-( 2coszv,.+b251’n

7
R¢

s1nvecosve

a b . . <
+ sing,sinV, (Ry cose.cosV, + Ry singsinV ) - Ry cos8 cosV,

(3.108)
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Dab cos(y-a)(bz-az)sinvr cosVp s1‘n2Ve

= 2 2 Z Z 2eink il 1/2
Ve [clcoseV +(accos V +b7sin V. )sin Vel

G

. . 1/2 |
+ Dab[czcoszve+(azcoszvr+bzsinzvr)s1nzve] sin(y-a)

2,2 5,2 .4 2 .2 2...2 172
[asbs+Zscot Ves(ass1n Vr+bscos Vr)]

Lrnecl Leinl 2rnt s
ascos Vr+bss1n Vr+Zscot VeS

2

sinet(asin¢tcosvr-bcos¢tsinvr)(bz-az)sinvrcosvrc coszve

[(3251'nAZV'.+b2cos‘2Vr_)czcosz\le+a2b2'sinZVe]U2

+

2

. . . 2 .2 2
+ s1net(as1n¢t§1nvr+bcos¢tcosvr)[(a sin“V +b"cos"V.)

1/2
2 2 2.2 .2
. c,cos V+a“b sin"V, ]

abcos(y-a) 2 2

1/2
t T {czcoszve+(a2cos Vb é

. 2 .
sin“V.)sin Ve]

2_,2
(b”-a7) 2 . b
o { "ﬁg——' s1nVrcosVrcos Ve-s1netcosve (Rt sing,.cosV,
a -
- R;‘cos¢ts1nvr) } . (3.109)

_ . 2 2 2 2 2 .2 . 2, 11/2
GY = -Dabsin(y-a)[c“cos Vo+(a“cos“V +b"sin V.)sin Ve]

(3.110)
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D
H

8 - coset(asin¢tcosvr-bcos¢tsinvr)

1/2

2.:.2 2...2 2_..2 2,2 .2
[(a®sin V +b“cos Vr)c cos“V_+a“b sin Ve]

172

abcos(y-a) 2 2
V ]
e-

Ty [c“cos Ve+(a2

cosZVr+bzsin2Vr)s1’n2

C s a b . .
{ g{'s1nets1nve-cosetcosve(Rt cos$cosV .+ Ry sing,sinV )} ,

(3.111)
G¢t =z - s1net(acos¢tcosvr+bsin¢tsinvr)

2.:. 2 2.2 2...2 2,2 . 2 172

. [(a%sin“V_+bcosV _)ccos“V _+a“bsinV_]
r r e e
abcos(y-a) 1/2

| B [czcoszve+(a2coszvr+bzsinzvr)sinzve]

3 a b I3
- { sine,cosV, (Ry sinspcosVp- Ry cos¢,sinV.)} . (3.112)

ab 172
GR =5 cos(y-a)[czcoszve+(a2coszvr+bzsinzvr)sinzve]

t

« {[sine cosV (a cose.cosV +b singysinV ) + ¢ cosetsinve]/Rf
. . 2 3

- [cosZVe(azcoszvr+bzs1nzvr)+czs1n Ve]/Rt} R

(3.113)
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Hv = ab cosVecoset -C sinVesinet(asthsinVr +Abcos¢tcosvr)
e (3.114)
Hvr = ¢ cosV, sing, (asing¢.cosV. - bcos ¢, sinV.) (3.115)
3.116
W =0 ( )
Y
Hg = -ab sinvesinet +cC cosvecoset(asmq:tsinvr + bcos¢tcosvr)
(3.117)
H¢t =C cosVesinet (a cos¢tsinvr -b sin¢tcosvr) (3.118)
and
abc
Ho =R7 . (3.119)
t ot

It is seen that one can solve for (AVe, AV, Ay), for a known (ARt’ A8y,
A¢t), using Equation (3.104). To obtain a diffraction point (Ve’ Vr)
for a given receiver location (Rt’ 8y » ¢t)' one can always assume the
first diffraction point is at the source (Ve’ Vr) = (Ves' Vrs) with the
radiation direction (ef,¢f = %) for the positive ray (in +§ direction)
or (ef,q;f = %w) for a negative ray (in -§ direction), and gradually add
the increments (ARt,Aet,A¢t) until the final radiation direction

(et’°t) is reached. The detailed description on this process was
already given for the elliptic cylinder perturbation in Section III-C.2,
One need not start out from the source everytime, but obtain the new
diffraction point directly from Equation (3.104), provided that the new

receiver location does not deviate greatly from the previous direction.
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After the geodesic path is determined by this procedure, various

other parameters associated with actual field calculations must be

found. The Fock parameter £ is given by

k"g 173

1
==l (Zz7) d . (3.120)

From Figure 3.10(b), the geodesic arc length is obtained as follows:

2 cosy = (r = Se) sina . (3.121)
or

g siny = r_ - (r - S;) cosa . (3.122)
Therefore,

rg €OSY

ds =m da , (3.123)

or
1 dSe .
de = Sin(Y'Q) Hv; * dve * (3.124)

98



The Fock parameter £ is obtained by integrating along V. or Ve, i.e.,

ay keg 13 1
Vo 1 keg 1P 1 da_ 1
= rg cosy \{ 755 ( 2 ) COSZ(Y-G) d"} dVr (3.125)
rs
where
2.2 . 2 by 2es 2 b 20 iy
da  lagbg * zgoot ™V  (agsin®V + b cos vl
vt T2 2, 2.2yt L 2.4 (3.126)
r agcos V. + bcsin V. + zcot Veg
or
Vg 1 kpg 173 1 dSe
tel G (Z) TSiGea wvy e . (3.127)
es e

Note that pg = 1/(K1coszs + Kzsinzs) and K1, Ko are two principal
curvatures given in Equations (2.79) and (2.80), respectively.
This completes the elliptic cone perturbation solution for the

antenna mounted off the mid section of the ellipsoid.
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4, Comparison with Exact Solution

Geodesics for a source mounted on an ellipsoid can be analyzed
precisely by computing the geodesic path defined by the surface
parameters (BQ,¢Q) and the geodesic tangent defined by the radial vector
direction (et,¢t) as shown in Figures 3.13(a) and (b), respectively.

The geodesic path indicates the actual diffraction point location on an
ellipsoid; whereas, the geodesic tangent indicates the radiation

direction at the corresponding diffraction point.

In order to show the validity of the perturbation solutions, a
more elaborate numerical method for the geodesics employing calculus of
variations, whose results are indicated as exact solutions here, is also
studied and derived in Appendix A. Although this method provides
accurate geodesics on the ellipsoid, it is far too complicated and
inefficient to use for practical radiation applications. However, the
exact solution is most appropriate for coupling problems where the exact
path is desired between two known points on the surface.

To show the validity of the elliptic cylinder perturbation
solution, the source is placed at 65 = 90° and the geodesic paths and
geodesic tangents associated with this source location are calculated as
shown in Figures 3.14(a) and (b), respectively. In each figure, the
elliptic cylinder perturbation solutions are compared with the exact

solutions. Note that the 4 x 6X x 40X ellipsoid was chosen for more
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(a) Geodesic path defined by the surface parameters (60,¢Q).
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(b) Geodesic tangent defined by the radial vector direction
(8y20;)e

Figure 3.13. Definition of geodesic path and geodesic tangent,
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(a) Geodesic paths defined by surface parameters (90,4»0).

Figure 3.14, Comparison of geodesics for a source mounted
at 8g = 90° on a 41X x 61 x 40X ellipsoid.
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(b) Geodesic tangents defined by the radial vector direction
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Figure 3.14, (Continued).
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realistic aircraft and missile shapes. It is also noted that vy is the
angle between the geodesic tangent f and the principal direction £1 at
the source location. Looking through those figures, one can see that
the geodesic paths and the geodesic tangents of both methods coincide
with each other within the significant energy region close to the
source. This coincidence in the significant region can be checked more
precisely by calculating the Fock parameter (£) along each geodesic
path. Actually, the Fock functions associated with the solutions drop
8.6 dB, 16 dB, and 23 dB as the Fock parameter (£) reaches 1, 2, and 3,
respectively, in the deep shadow region. This clearly shows the
significant portion of the surface as discussed in Section III-A.
Although one can see small discrepancies for the rays toward the tips of
the ellipsoid, i.e., lines for y = 80° and y = 280° in these figures,
they only happen when the caustic effects come into play. In the
caustic region where virtually an infinite set of rays have significant
effects on the radiation pattern, the basic GTD theory fails. The study
of this caustic effect is beyond the scope of this study. If one
neglects the caustic regions, the geodesic paths and geodesic tangents
using the perturbation models coincide with the exact solution very well

in the significant region.

The elliptic cone perturbation solutions can be examined by
placing the source at 64=30° as shown in Figures 3.15(a) and (b), where
the geodesic paths and geodesic tangents of the elliptic cone

perturbation solutions are compared with those of the exact solution
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(a) Geodesic paths defined by surface parameters (GQ,¢Q).

Figure 3.15, Comparison of geodesics for a source mounted at
8 = 30° on a 4x x 6) x 40X ellipsoid.
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Figure 3.15. (Continued).
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for the same 4X x 61 x 40X ellipsoid model. One should note the good
agreement between the two results. The significant energy region of the
geodesic path is also shown using the calculated Fock parameters (£) in
the figures., For more detailed analysis with various source locations,
one is referred to references [13,14].

To make sure that the solution switches correctly between the
elliptic cylinder and the elliptic cone perturbation method, the source
is placed at 8,=85° and the geodesic paths are calculated as shown in
Figure 3.16. Comparing Figures 3.16 with 3.14(a), one can see that the
geodesic paths of the elliptic cone perturbation solution are very close
to those of the elliptic cylinder perturbation solution for that source
location,

These comparisons illustrate that the geodesic paths can be solved
by using either numerical technique; however, the perturbation is much
more efficient. In addition, one can easily relate the radiation
direction with the desired geodesic path using the perturbation method.
On the other hand, one is not sure which geodesic is necessary to

achieve the desired radiation direction using the exact solution.
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Figure 3.16. Geodesic paths defined by the surface parameters (eQ,¢Q)
for a source mounted at 6s=85° on a 4X x 61 x 40X
ellipsoid.
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D. FLAT PLATE ATTACHMENT TO AN ELLIPSOID

The flat plates used to simulate the aircraft wings and stabilizers
are described by defining the location of the plate corners., The
corners are numbered in a counter clockwise sense with the first and
last corners being on the ellipsoid. The attachment of the flat plate
to the ellipsoid is essential in that the intersection represents the
wing-root section of the aircraft. The plates can be attached to the
ellipsoid as illustrated in Figure 3.17(a) and (b). However, when the
plates are attached on the lower half of the ellipsoid, the y component
of the first and last corners are set equal to the y dimension of the
ellipsoid center line as shown in Figure 3.17(c) and (d). This
modification is made to eliminate the interior wedge problem which leads
to multiple reflections and diffractions. Since the antenna is
restricted to be on the top or near the top of the ellipsoid, this
modification is reasonable. In addition, the field contribution from
this edge is small compared with the other edges of the plate. This is
due to the great attenuation of the surface wave propagating along the
ellipsoid surface in reaching the edge. Note that the plates are not
restricted to 1ie horizontally. The flat plate attachment above and
below the center line of the ellipsoid will be discussed separately in
this section.

Now, the first approach to this problem is to find the intersection
point between a line (i.e., one edge of the plate) and the ellipsoid.
Then one can follow the same concept to find the curved junction edge

between a flat plate and the ellipsoid.
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Figure 3.17. Fuselage and wing geometries for aircraft model looking
from the front. The antenna is assumed to be on the top
portion of the models.
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Using the geometry as showa in Figure 3.18(a), the ellipsoid

surface is defined by

+» - ’ ~ ~
R(Ve’vr) = a cosVe coser +b cosVe s1nvry +C sinvez (3.128)

and the unit edge vector is given by

X ety ey +zey, (3.129)

> >
where P(xl,yl,zl) and Pz(xz,yz,zz) are the position vectors of two
corners with respect to the origin of the coordinate system, From

*
Figure 3.18(a), the position vector of the first intersection point Py,

can be easily defined by

-

> >
Pur = P1 - & . (3.130)

>
Since PHI(xh,yh,zh) is on the surface of an ellipsoid, one obtains the

following equations:

a cosVe cosVr Xy = 21814
b cosV, sinV. = y; - 218y
and

o smVe

Zy - 2%, . (3.131)

From these equations, one finds
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(b) Geometry of the curved junction edge.

Figure 3.18. Flat plate attachment to an ellipsoid.
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("1"‘1‘*1x)2 (yl“lely)z (’1“‘1‘31z)2
2 * z 7 2 =1 . (3.132)
Defining
A= bzczeix + azczeiy + azbzeiz
B = - bzclee1x - azczylely- azbzzlelz
C = b2c2x§ + azczyi + azbzzi - a%p2c? (3.133)

and employing Equations (3.132) and (3.133), one obtains the distance

+*> >
between the points Py and Pyp such that

-B + { B¢-AC
29 = A . (3.134)

and

2y = A . (3.135)

The smaller one of (21,22) will be used in Equation (3.130) to define
>
the position vector PHI(xh,yh,zh). One can follow the same procedure to
>
obtain the second attachment point PHF' Then, as shown in Figure

3.18(b), one can define the unit vector

> >
Pur nesYnesZne) = Pur(Xni»Yni»Zni)

eFI(X,y,Z) = ’ (30136)

> <>
‘PHF(th’yhf,zhf) - PHI(xhithi!zhi)‘
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and the binormal unit vector which is given by
ty(x,y,2) = epr(x,y,2) x Nj(x,y,2) (3.137)
where the unit normal vector of the plate is given by

el(xl "yl’zl) X eZ(XZ’yZ’ZZ)

ﬂp(x,y,z) = . (3.138)

ley(x15¥1521) x e5(x5,¥5,25) ]
According to the variation of the ellipsoid surface, one can divide the
1
line FHIPHF into N-1 unequal length segments (zi) with i = 1,2...,N-1,
<>
The position vectors Pi along PHIPHF are given by the recursive equation

such that

> > t a .
Pi=Piop*%yepp 1= 200Nd . (3.139)

>
By using the position vectors P;j just found, one can attain N position

vectors along the curved junction edge,i.e.,

e 0 oA
;cEi = Pi + xi tb fOP i = 2,3,0-.-,N’1 (3.140)
with
> +> > +>
PCE1 = Pu1 and Pcgy = Pye . (3.141)
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Note that z: can be found by using the same idea employed to compute 2.
Therefore, the curved junction edge is found by connecting all N
position vectors PCEi(x,y,z).

Next, consider the plate attachment below the center line of the

ellipsoid. The first intersecting point PHI(xh’yh’zh) can be defined

by

+ > -

Pt = P1 - 41 & (3.142)
with

Xp = X1 = *1 €1

Yp = Y1 - 1 81y
and

Considering the attachment to the elliptic cylinder as shown in

Figure 3.19, one finds

2 2
(vp-278y) (2y-24y,)

+ =1 . 3.144
b2 2 ( )
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Figure 3.19. Flat plate attachment below the center line of an
ellipsoid.
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Defining

. 2.2 2.2
A=c ely +b elz
B = -cz_ylel.y - bzzlelz
C = czyf + b2z§ - b2c? (3.145)

and employing Equations (3.144) and (3.145), one obtains the distance

> »>
between the points Py and Pyj such that

-B + J BZ-AC

17 A (3.146)

and

-8 - [ BZ-AC

22 = A . (3.147)

The smaller one of (11,22) is used in Equation (3.142) to define the
position vector FHI(xh,yh,zh). One can follow the same procedure to
obtain the second attachment point ;HF° The procedure to obtain the
curved junction edge is the same as the attachment above the center line
of the ellipsoid.

This completes the derivation of the curved edge junction between
a flat plate and the ellipsoid. Note that the plates simulate the

wings, stabilizers, etc.
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CHAPTER IV

RADIATION FIELD CALCULATION ALGORITHMS

A. INTRODUCTION

This chapter presents details of the techniques to determine each
of the individual Uniform Geometrical Theory of Diffraction (UTD) terms
which contributes to the total field. It is noted that, since UTD is a
high frequency method, the lower frequency limit of this solution is
dictated by the electrical dimensions of the ellipsoid and plate
structures, i.e., the semi-minor axes of the ellipsoid are required to
be at least a wavelength and each plate should have edges at least a
wavelength long. In addition, each antenna element should be at least a
wavelength away from all edges. With the antenna mounted on the
fuselage it is obvious that the rest of the structure is very close to
the soruce. That is to say, the antenna is in the near field of the
structure. However, it is assumed that any point on the scattering body

is in the far field of the source.
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As depicted in Figure 4.1, the total radiated field is the
superposition of the following UTD field components: 1) direct field
from the source; 2) curved surface diffracted fields from the composite
ellipsoid (referred to as the source field here); 3) reflected fields
from the finite flat plates (i.e., wings or stabilizers); 4) diffracted
fields from the edges of the plates, including diffraction from the
curved junction edges formed by the intersection of the plates with the
composite ellipsoid; 5) and vertex diffraction from each of the plate
corners. In addition to the above direct scattering from a structure,
the rays reflected or diffracted from one structure tend to interact
with the other structures causing various higher order UTD terms such as
double reflected, reflected-diffracted, diffracted-reflected, and
double diffracted, etc. Thus, the total radiated field of an antenna in
a complex environment can be expressed as a summation of individual UTD

terms as follows:

total =~ s r d T Bt Bt Eg Ear * Bdg ° (4.1)

mt
+
(3}
+
™

E

Superimposing all of these scattered field terms is not unduly time
consuming in that only a few contribute significantly in a given
radiation direction. :

The first step in obtaining the solution of each UTD term is to
determine the ray path using the laws of reflection and/or diffraction.

After the ray path is identified, one must then examine the total ray
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Figure 4,1, Various first order UTD terms.
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path to see whether or not it intersects an obstacle. If the ray path
is not interrupted, the field value is computed and superimposed with
other terms. On the other hand, if the ray path is interrupted, the
field is not computed. A complete computer simulation program has been
written which takes advantage of this feature and was used to provide
the calculated results presented in the next chapter.

Each UTD mechanism, which is expressed in terms of the x-y-z
components of the electric field, will be discussed in detail in the

following sections.
B. SOURCE FIELD

This section presents details of the techniques employed in the
computer routines to obtain the direct and curved surface diffracted
fields for a near field or a far field receiver. Both fields will be
referred to as the source fields in the rest of this dissertation., The
surface is assumed to be perfectly conducting and the surrounding medium
is free space. An exp (jut) time dependence will be assumed and
suppressed in the following formulations.

The solution of the radiated field for an infinitesimal electric
or magnetic dipole (i.e., dse(Q') or dsm(Q'), respectively) mounted on a
perfectly conducting convex surface was presented in Sections II-B.(1,2)
and the pattern factors Be and Em for an extended aperture (i.e., slot)
and linear antenna (i.e., monopole), respectively, were given in Section

11-B.3. Thus, the source field solutions can be obtained by replacing
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dPe(Q') and dam(Q') with the pattern factors Ee and Em’ respectively.

The source field solutions are then summarized as follows:

a)

where

when the receiver is in the 1it region,

(i) for aperture type sources,

-jk -
== (P

nA ~
(Lmn + Lmb)

o-iks

LeB)TF 4 (Pet?) (s T

2
o

(ii) for monopole type sources,

L _ .02 "
Ee = (Len + Leb)

e-jks

S

ikP_+P
J .
e S

F coszei)]

R LAIr S SOOI SN TS i
—g= [(P_+b")(H* + T(F coso') + (P «t")TF coso’]

in the near field, and

T 4n the far field
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b)

-jKZ,

5 cimalru2itl i
2. Pe sine’ [H+T Fcose ]

‘jkzo -
4 Pe

s o9
sin® TOF .

When the receiver is in the shadow region,

(i) for aperture type sources,

n‘
(Dmn + Dmb

ba

)

o-Jks
S(o.Ts in the near field, and
ikP__op

eJ e ' in the far field
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(4.7)

(4.8)

(4.9)
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(i1) for the monopole type sources,

e-jks
in the near field, and
£S _ (nNa bg s(p.+s ’
Ee = (Den + Deb) c
ikp__+p
J .
e & T inthe far field (4.11)
_ =176
n —3kip - _Jkt‘ pg(Q) |
De S 2 PeH l varqy- ’
- _ (4.12)
_ _l-1/6
. P (Q'
b _ ~3klo 5 -jktl '¢") I
De = —Fw Pelgde l Pgtq) | . (4.13)

It is noted that the caustic distance, Pc, [30] is approximated by the
geodesic arc length given in Equations (3.71), (3.121) and (3.122). It
is a reasonable approximation in that the dimensions of the ellipsoid
are assumed to be large in terms of the wavelength. The other
parameters used in the above equations were defined in Section II-B.
Through an extensive study [7] of geodesic paths on a surface of
revolution, the dominant rays needed to be considered would not exceed
four rays. These four rays are illustrated in Figure 4.2. However, the

significant effect of the ellipsoid surface is associated with a region
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Figure 4.2. The four dominant GTD terms that radiate at

(8=90°, ¢=145°).
around the source. Since the fuselage of the usual aircraft is very
long and slender, only two dominant rays are included in the
computation of the source field in the deep shadow region. It-is also
observed that rays 3 and 4 in the figure fall into the caustic region
where the basic UTD theory fails. In order to avoid this caustic
problem, the cone boundary shown in Figure 4.3 is used in determining
whether one or two rays are used in the solution. Note that 8j is
defined automatically by determining the caustic angle in the elevation
pattern (8;) and adding a few additional degrees to that value, i.e.,

Bip = Bc + AB where 2° < A8 < 10°. The caustic angle B, can be
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Figure 4.3. Cone boundary used to define terms to be included in
' the shadow region.

obtained by enforcing the determinant of the first matrix in Equation

(3.104) to zero with the following assumptions:

r's"Se, 9t~Y~B-1r/2,a~Oand¢t~00rﬂ.

Note that the above parameters were defined in Section I11-C.3. One
would expect to observe slight discontinuities somewhere, because
various numbers of rays are included in different regions.

This completes the source field calculation and this source field
will also be used as an incident field at the scattering body of the

aircraft structure in the following sections.
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C. REFLECTED FIELD

The reflected field from each of the finite flat plates is
determined using image theory [24]. As shown in Figure 4.4, the
receiver image position with respect to jth plate is given by

IS PR - + >

Pl = P - 2ng « (Pp - Pc1 j) . (4.14)

’
The source field solution is, then, used to compute the electric field
(Ei,E;,Ei) at the image position ;:j. This field would exist at that
point if the plate were not present. The second step is to ascertain
if the ray path from the effective source to the image position
intersects the plate. This ray path shadowing algorithm will be
discussed in detail in Section IV-F. If the ray path is not
interrupted by the plate, a reflection by that plate does not occur
for that receiver position. If the ray does pass through the plate,

then the reflected field (Er = E;; + E;; + E;E) is given by

res sl

Ex(Pr) Tix Txy Txz Ex(Pe?)
Feo sali

Ey(Pp) Tox Ty Tyz Eg(Pp) (4.15)
roo s 313

E,(Pp) Tax Tzy Tz E;(Pe7)
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Figure 4.4. Geometry used to determine reflected field from
plates (wings, etc.).
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where [T] represents the reflected field polarization transformation
matrix which satisfies the boundary conditions [32] on the given plate.
This matrix is determined using the normal n and tangent t unit vectors

of the electric field to the given plate as follows:

> - +> PN ~ *S -

EN=(n+E%n-(tE)t plate (4.16)

(£« ES)Yf =85 - (n - ES)n | (4.17)
S > P <>

EM = 2(n » ES)n - ES (4.18)

or
TeX + Tyxy *+T,,2=2(n +x)n-x (4.19)
Txyx *Ty +Tz=20n-y)n-y (4.20)
szx + Tyzy + Tzzz =2(n e 2)n -2z . (4.21)

Since the T-matrix is independent of the receiver location, it is stored
for each plate in order to optimize the computational efficiency of the
numerical solution. The total reflected field for a given receiver
position is, then, the superposition of the reflected fields from the

individual plates.
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D. DIFFRACTED FIELD

The diffracted field is obtained by using the UTD formulation
presented in Section II-C. The sﬁadowing of the incident and reflected
rays by the flat plates is compensated by the addition of the diffracted
fields which cause the total field to be smootﬁ and continuous at the
incident and reflection shadow boundaries. The most difficult part in
computing the edge diffracted field is to determine the ray path. For
any particular source, plate edge, and receiver location, the diffracted
ray path is unique [25]. The key in finding this unique path is to
determine the actual diffraction point along the given edge.

Typical geometries for the diffraction point in the iiluminated and
shadow region are depicted in Figures 4.5(a) and (b), respectively, and

will be discussed separately in the following sections.

1. Diffraction Point in the Lit Region

As shown in Figure 4.5(a), the diffraction point in the 1it region
must be located at a position along the edge such that the angle 8
between the incident ray and the edge equals the angle g' between the
diffracted ray and the edge. With i and d defined as unit vectors in
the direction of the incident and diffracted rays, respectively, and é

defined as a unit vector lying along the edge, the above noted basic law
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Figure 4.5. Illustrations of the diffracted field by the straight
edge.
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of edge diffraction [27] (i.e., 8 = 8') can be stated equivalently by

the requirement that
i ee=dsee . ‘ (8.22)

The edge unit vector e in Equation (4.22) can readily be computed from
the specified corner coordinates of the plate. From the procedure

depicted in Figure 4.6, the diffraction point is given by

> +1
Sy 1P - Pl (P - B) 6] e
= + ' > rY - s € e
d 3 ‘; _ ; L+ [P, - P'| r S i i
3 s r r
in the near field case, (4.23)
or, |
> > » »>1 PS . .
Py =P+ |Pg - P | cosge; in the far field case, (4.24)
where
>1 > »> > - -
PS = PCi + {(PS - PC1) . e1} e; (4.25)
>0 > > +> - PS
P. = Pci + {(Pr - Pci) . ei} e; (4.26)
and
a L4 é]
COtS = ~ S Y4 . 4.27
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2. Diffraction Point in the Shadow Region

If the edge of the plate is not located in the 1lit region of the
source as shown in Figure 4.5(b),; the diffraction point cannot be
obtained directly in that one has to resort to a numerical approach. An
iterative numerical search procedure is employed here to determine the

~

diffraction point which satisfies the diffraction law (i.e., jee = &.é).
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procedure, values of i.e are computed and stored for a sequence of N
sample points along the plate edge. The coordinates (x,y,z) of the
sample points are selected and defined in the following manner. For an
edge of length 2, the N sample points effectively subdivide the edge

into (N-1) segments of length Az, where A2=2/(N-1). The distance t

th

between the one reference end of the edge and the n”" sample point along

the edge is then given by

t(n) = (n-1)a2 ; n=1,2,3,....,N . (4.28)

These distances define the coordinates (xn,yn,zn) for each of the N
sample points. It is noted that the ;-é curve for the straight edges
which attach to the fuselage varies rapidly near the fuselage. So for
these edges, the sample points are taken in a nonlinear way with more
samples near the fuselage, i.e., the distance t is given by

n-1

t(n) = z iAs H n=1’2’3,.000'N (4’29)
i=0
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where

£

s =N.T - (4.30)
1 .
i=0

Except for this variation, the routine follows the detailed approach
which was given previously.

After the i-e values are computed and stored at the N sample points
along each plate edge, the routine initiates a search to determine which
one (if any) of the (N-1) segments contains the diffraction point. The
test to determine whether the diffraction point is within the limits of
the physical edge or not can be done by computing a-é at two ends of
each physical edge for a specified receiver point and then comparing
them with stored data %-é at the two ends. A diffraction point lies
along the physical edge if a-é>f-é at one end of the physical edge and
&-é<€-é at the other end. Otherwise, the diffraction point does not
exist on the bhysica1 edge. If the diffraction point falls within the
limits of the physical edge, the routine selects the midpoint of the
edge as the next test point. Note that a selected test point in the
search routine always coincides with one of the N sample points in the
list of previously computed ;-é values. Noting the sign of the
inequality between €-é and é.é at the midpoint and two endpoints of the
edge, the routine selects the half of the total edge which contains the

diffraction point as the second search interval. The routine continues
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to halve the search interval in this manner until, after several cycles
in the iteration, the length of the search interval is reduced to the
segment length Af between successive sample points. This situation is
depicted in Figure 4.7, which shows the diffraction point located within
the segment bounded by distances t(m) and t(m+l). At this stage of the
search, the routine uses linear interpolation to compute the distance

hg to the true diffraction point. The value of hy is then used to

<>
compute the diffraction point coordinates Pyq(xq, Y4s 24), as given by

Xq = Xt hd < e, (4.31)

Yg = N + hd . ey (4.32)
and

zd=21+hd-ez (4.33)

3, Curved Edge Diffraction Point

This section presents a discussion of the routine for computing the
diffraction point on a curved edge of a finite flat plate. In general,
a curved edge solution is needed in the analytical aircraft model to
treat the diffraction which occurs at the junction of the finite flat

plates and the ellipsoid, and the chopped fuselage curved edge.
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Figure 4.7. Graphical representation of how the diffraction point
Tocation is determined.
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The basic approach used to determine the diffraction point along
the curved junction edge is essentially the same as that for the
straight edge diffraction point in the shadow region which was discussed
in the previous section. The only difference is that the edge unit
vector é is a function of position along the curved edge and the
determination of the incident unit vector i is more complicated in that
the curved junction edge lies on the ellipsoid surface as shown in
Figure 4.8(a). The position vectors of the N sample points along the
curved junction edge are easily computed using the attachment algorithm

which was discussed in Section III-D, Accordingly, the ith edge unit

is obtained as follows
P P
A Cinn O
e.i = l; . ; | ; i = 1,2,3,-000’N0 (4.34)
CEiyp OBy

The unit vector ; is determined in the following manner. Since the
curved junction edge lies on the ellipsoid surface, one must use the
elliptic perturbed cylinder or elliptic cone method which was discussed
in Section III-C to find the incident unit vectors. The unit vector i
for each of N sample points along the curved junction edge is expressed
by

:A ~ ~ . (4.35)
i= t1 cosB + te sing
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Figure 4.8. Illustration of the diffracted field by the curved junction

edge.
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(b) Incident unit vector on the curved junction edge.

(¢) Incident unit vector on a developed elliptic cone.

Figure 4.8, (Continued).
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where 8 denotes the angle between El and the unit vector i. The

th

location of the source and the i sample point on the curved junction

> . > .
edge are defined as PS(V Vrs) and Pi(V Vri)’ respectively.

es’ ei’
For the antennas mounted on the off-mid section of an ellipsoid,

the perturbed cone method is used in the calculation of incident unit

vectors as shown in Figures 4.8(b) and (c). The B8 angle is, then,

given by
Bg=yvy~-a ’ (4036)

where a was given in Equation (3.86). The y is obtained from the

following geodesic equation:

re cos(y - a) = rg cosy , (4.37)
where
re = (az °°52Vrs + bgsinzvrs + zgcotl"ves)“2 ’ (4.38)
ry = (a2 cosPuy + blsinV  + Zeott )l - s, (4.39)
and
Se = E:: [CZCOSZV; + (azcoézvri + bzsineri)SiHZV;]llz' dV; ,
(4.40)

with
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as =a cosVeS
bS =b cosVeS
and
z, =2 sinVeS . (4.41)

Thus, y is given by

- r¢ -~ fa Cosa
1
y=tan™ (TS ) . (4.42)

Combining Equations (4.35), (4.36) and (4.42), the unit vector iat

each of N sample points along the curved junction edge is then computed.
For the antennas mounted on the mid-section of an ellipsoid, the

elliptic cylinder perturbation method is used in the calculation of the

incident unit v ng the curved edge. Note that the angles 8

and vy are the same for the elliptic cylinder case. The geodesic

equation is, then, given by

-1 Se
B =tan ~ 37 (4.43)
where
Vei [] . ! 1/2 '
Sg = g {:Zcoszve + (azcoszvr + bzs1n2Vr)Si02Ve} dvg (4.44)
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and
Vri
S.=[ cosV {azsin
ry es
rs

s v 12

2 1
V. + b"cos Vr} dv . (4.45)

r

Combining Equations (4.35) and (4.43), the incident unit vector i at
each of the N sample points along the curved junction edge is, then,
computed.

After the edge unit vector and the incident unit vector at each of
the N sample points on the curved edge are computed and stored, the
actual diffraction point on the curved edge is determined using the

diffraction point search algorithm for the shadow region.
4. Diffracted Field Calculation

Assuming that the ray path is jdentified, the diffracted field for

the mth edge of the jtN plate is given by

-Ed(E )—l |—D Cesm 0_| _ES(F )_
tV'r _ sibsd »$5845 1 d -jks

ed(p 0 D ' ES(P -

E PR | | h(Lso'50,80n) | | Ey(Pg) | (4.46)

The parameters needed for the diffracted field calculation are given as

fol]owé:
diei
sd(s! + 2) . 2
L = ;a—:—;f—:-z sin"8, ’ (4.47)
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and

dens
¢ = tan™} — J
b .
d m,J
_ _I
-1 l-:;'aj }
¢' = tan | 7.2 l
- -b .
I m,J |
_ _
51
A= ] 53(ssT)

l sd in the near field, and

' a >
I -P +Pg in the far field.

(%]
]

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

- ¥
Note that ES(Pd) is the field incident on the edge at the diffraction

point and is obtained using the source field solution which was

discussed in Section IV-B.

and

A al

ES(Py) = E"(Aed ) + E2(5+4 )
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a al al

ES(Py) = E"(n+B ) + E(b4) . (4.54)

The unit vectors of the edge fixed coordinate system for the incident

ray are given by

-~ -~

n cos¢' - bm,j sing' (4.55)

o
L]

and

r

| B' = ¢' xi . (4.56)

Now, the diffracted field in terms of the rectangular coordinate system

for the mth edge of the jth plate is given by

= _ngd, s
En g = BEg+ ¢ E) (4.57)
| with
¢ = n; cosd - bm,j sing (4.58)
and
g = ¢ x d - (4.59)

These unit vectors (3',3',;,5) will be used in the following sections

without defining them again.
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5. Corner Diffracted Field Calculation

The corner diffracted field is usually very small except near the
edge diffraction shadow boundarie;. Therefore, the physical edge length
is extended by 5 wavelengths for the corner diffracted field calculation
in that the current corner diffraction coefficients are based on the
concept of equivalent edge current [31,33], which would exist on this
edge when extended to infinity, as discussed in Section 11-C.2.

There are two corner diffraction terms associated with each finite
plate edge. However, for the edges attached to the fuselage, there is
only one corner diffraction term involved in the calculation. The
corner diffracted field and its related parameters are defined in
Section 11-C.2. Some parameters related to the geometry given in Figure

4.9 are defined as follows:

S B
B = cos (sc s ep 5) (4.60)
B = cost (g ce )
oc m,j (4.61)
and
S¢S
Le = 575 . (4.62)

The total corner diffracted field is obtained by superimposing the

corner diffracted fields from each of the corners.
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Figure 4.9. Illustration of the corner diffracted field.
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E. FIELD CALCULATION FOR HIGHER ORDER TERMS

In addition to the above direct scattering from a structure, the
rays reflected or diffracted from'one structure tend to interact with
the other structures causing various higher order UTD terms (i.e.,
double reflected, reflected-diffracted, diffracted-reflected, and

double diffracted).

1. Double Reflected Field

The double reflected field E™" can be obtained following a
procedure similar to the single reflected field in Section IV-C. As

shown in Figure 4.10, the images of the receiver location with respect

to the jth plate and jth-kth plates are given, respectively, by
»IJ- +> N + >
P =P =20y« (P - PCl R (4.63)
»J
and
+]s +1s - +] +>
sk 2 p7d . J
Pr =P - 2n, (Pr - PC1 k) . (4.64)

The source field solution is, then, used to compute the electric field

- »1s
ES at the image position PrJ’k. This field would exist at that point if

h th plates were not present. Then the double reflected

the jt and k
field is, then, given by

+

rr. - 1.
[EX 9600 = (1) (7], BT (4.65)
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Figure 4,10. Double reflection geometry.
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Note that [T]j and [T]k satisfy the boundary conditions on the jth and

kth plates, respectively, and the matrix [T] was defined in Section

Iv-C,

2. Reflected - Diffracted Field

A typical geometry for the reflected diffracted field is
illustrated in Figure 4.11. To begin the solution, one needs to define
the images of the second plate corners and the receiver location with
respect to the first plate. Frbm the geometry of Figure 4.11, the image

point of the receiver with respect to the kth plate is given by

"Ik > -~ > >
Pr = Pr - an . (PI‘ - P ) . (4.66)

The images of the mth corner of the mth edge of the jth plate with

respect to the kth plate are given by

> a > *>
Pe =P -2n e (Pe . =P ) (4.67)
m,J m,J m,J 1,k
and

1 »1
;ck ) Pck

Al m+i, J myJ

mi T T k) . (4.68)
meii  Cmd
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Figure 4.11. Reflected-diffracted geometry.
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~ Wl
respectively. The value i-emkj js then computed and stored at the N

>

sample points along each edge of the image plate. The iterative
numerical technique which was discussed in Section IV-D is used to find
the diffraction point ;ék on the edge of the image plate. From the
diffraction point on the image plate, the actual diffraction point ;d at

th

the m- edge of the jth plate is obtained as follows:

+ ’Ik

+Ik >
Py = Py

+2n « (Py - Pcl k) . (4.69)

After the ray path is identified, the source field ES is computed at the
diffraction point ;;k on the image plate. Next, the reflected field Erk
at the actual diffraction point ;d is obtained using the single
reflection solution which was discussed in Section IV-C, and is given

by

- »> -, ]
[EXG ] = (1], [E5(5)] (4.70)

Then the reflected-diffracted field is given by

"dm,i,2 | I~ BRI
£, ™I(P,) Dy(Lad'sbaBun) O | | Ef (Pg) _
= - pe~3ks |
rkdm,j > . rk >
El (Pr) I l 0 Dh(L9¢ ’¢’B°9n) l l El (Pd) l
- - - - - - (4.71)
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The parameters needed for the diffracted field calculation are given as

follows:
Sr‘d(sr + Si + !.) )
L= : sin®B . 4.72
S, Fastayg 0 ( )
—"r, 3 |
¢' = tan-l -s nJ (4 73)
sTe b, .
m,J
- _
1 srd, aj ‘
¢ = tan “rd_ ¢ , (4.74)
s "+ b .
m,J
— _
S | rd 2 2
8, = sin " ( fl' 1577« ep 517 ) s (4.75)
s+ s
A= , 4.76
srd(srd s st e sl ( )
and
_Srd in the near field, and
s = (4.77)

- +
-Pr . Pd in the far field .
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The reflected-corner diffracted field can be computed following the
same procedure as that of the reflected-diffracted field except using
the corner diffraction coefficient rather than the edge diffraction

coefficient, and is not repeated here.

3. Diffracted-Reflected Field

The geometry for the diffracted-reflected calculation is
illustrated in Figure 4.12. To begin the solution, one needs to define
the image point of the receiver location with respect to the jth plate

which is given by

>]s + - +> >
J = - . -
Pr, Pr 2nj (Pr Pcl J) . (4.78)

+]
If one assumes the image point PrJ as the receiver location, the

th

-’
diffraction point Pd along the m~ edge of the kth plate can be found

through the single diffraction point search technique which was
»1;
iscussed in Section IV-D, The diffracted field at the image point PrJ

is, then, given by

Y0 Tt N s
e5p.d) | Do(L,6',6,8,0) 0 | | Ef(Py) .
z - A -JKS
d, 3l s.3
ES(P l ES(Py) I

r) l I 0 D, (L,¢'54,8,n) I

- - (4.79)
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Figure 4.12. Diffracted-reflected geometry.
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Some interesting parameters for this diffracted field calculation are

given as follows:

and

(Sd+ Sdr‘)(s'i + 2‘)

. 2
L= : sin"8 ,
94 P L B 0
_ -1 ~ . -~ 2
8, = sin ( vﬁ- Is em,kl ),
-1 ‘ -5t ak
¢. = tan Ai - 9
-G e bn’k
REDS
¢ = tan " "
sd- b
n,k
- |
Si
A= 4 dr., d._dr, i ,
(s+s (s +s #s')
- L
J
IPr - Pdl in the near field, and

a ’IJ' . <
.pr . Pd in the far field .
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Finally, the diffracted-reflected field is obtained by multiplying the
reflected field polarization transformation matrix to the above

diffracted field, and is given by.

=d

A -d +1s
EmKTIE ] = 1]y ETR D) . (4.86)

For the corner diffracted-reflected field calculation, one needs to
use the corner diffraction coefficient rather than the wedge diffraction
coefficient. Beside that, the corner diffracted-reflected field
can be computed following the same procedure as that for the

diffracted-reflected field, and is not repeated here.

4, Double Diffracted Field

The double diffracted field contribution is usually small compared
with the other UTD terms. However, when one edge lies in the shadow
boundary of the other edge or both diffracted edges are close to the
source, a double diffracted field may be significant. A typical
geometry for the double diffracted field calculation is illustrated in
Figures 4.13(a) and (b). The key to solving for the double diffracted
field is to determine the two diffraction points along the diffracting

edges for specific source and receiver locations.
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(a) Double diffracted field when the two diffraction points
lie on the different plates.

Figure 4.13, Illustration of the double diffracted field.
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(b)

RECEIVER

Double diffracted field when both diffraction points
1ie on the same plate.

Figure 4,13, (Continued).
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When the two diffraction points lie on different plates as shown in

Figure 4.13(a), one needs to first compute and store the values

~d -
en i 3 1 at the N sample points along the second edge .3 The N
9 1]

sample points along the second edge are assumed as the receiver
locations and the first edge e , as the diffracting edge. Then the

- Ad
value en.j ° S 1 at each sample point on the second edge can be computed
]

J
using the usual single diffracted field algorithm and stored. In this
procedure, the corresponding diffraction point Edl on the first
diffraction edge for each sample point on the second edge is also
determined using the diffraction point search technique which was
discussed in Section IV-D. Next the diffraction point Edz on
the second edge is found using the diffraction law, i.e.,
ém,j . gdl e m,j " ;dz. After the ray path is identified, the double
diffracted field is computed in the following manner. The incident

-d s
field E ™J at the second diffraction point is given by

“dm,j 2 B I : - |
EI (sz) DS(L19¢19¢1’B°19n1) 0 ‘ E (Pdl
ElT.J(pdz) I | 0 | | Ei(pdl)l

_ _ _ (L1s¢19¢19 1’"1) | | _

o dl
. AleJks

(4.87)
where ES js the source field, which was discussed in Section IV-B at the

>
first diffraction point Pq,. The parameters needed for this diffracted

field calculation are given as follows:
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s l(s1 + ) 9
L = d . Sin B »
1 s 1, st v+ ol (4.88)
. -1 ~dy o~ 2
By = sin™ ([ [1- s Teep 51 (4.89)
Ai A -
' -1 l Sty
4 = tan 1. g , (4.90)
m,J
_ _
- . -
-1 I s L. nj |
4 = tan R , (4.91)
7" Pm,j
_ _
and
K
A d1 d - . 4.92
3 1(s 1, s‘) ( )

Finally, the double diffracted field at the receiver location is given

by
~_dp,39n,k,2 | |~ ' 1 dm, 2
E| J (Pr) | DS(L2:¢2,¢2,802J\2) 0 EI (sz)
dp . id dn i .*
Elm,.] n,k(;r) 0 . | Elm’J(PdZ)I
_ _l l__ Dg(Lps 85 9758525M2) | |_ _
. d
-jks-2
* Ase ) . (4.93)
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The parameters needed for this diffracted field calculation are given as

follows:
dp q
S S . 2
L2 ="d; d; sin Bo2 ’
s “+ s
8 - e1n-1 ( , 1= ':dzp ; |2 \
02 R \ J -~ 'J \'n’kl ) ’
- dr . -
] _1 -s 1' nk I
¢y = tan —:a-—:-—" .
-S 1, b
n,k
_ _
- -
118 2. Ny |
¢, = tan a5 . R
s "o b
n,k
_ _
d
s 1
A d, d; d ,
2 S 2(5 1+ s 2)
and
- > > . .
Pr - sz in the near field, and
s92 -

a >

-Pr . sz in the far field .
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If both diffraction points lie on the same plate as shown in Figure
4.13(b), the ray path should be determined in a different way. The
first step is to project the receiver onto the edge which contains the
second diffraction point which is given by

+> A a

re >
PraPe  +[(Pe-Pc ) oepsleny; - (4.100)

Next, project the receiver onto the plane which contains the plate
~d
jtself and the second incident ray path s ~. Then, the projection of

the receiver is given by

> + -

P =P, - |Pr - Pr' bm,j . (4.101)
Assuming that the receiver is located at S:, one can find the first
diffraction point ;dl using the single diffraction point search
technique which was discussed in Section IV-D. After the first
diffraction point ;dl is determined, the second diffraction point ;dz

is given by

> >
> > >u > Ipr = Pr| ~d1
Pdy = Pay * |IPp = Pdyl - Tcose s , (4.102)

where

-1, ~d
e=1r-cosl(b ..51)

m, j , (4.103)
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and
> +>

4y T4

|Pr R Ed1! . . (4.104)
After both diffraction points are determined, the double diffracted
field can be computed in the same way as done for the diffraction points
on the different plates.

It is noted that the parallel component of the field incident on
the second edge is always zero for this case, and if the diffracting
plate is a half plane (i.e., n=2) there are two perpendicular fields
incident on the second edge as shown in Figure 4.14,

The diffracted-corner diffracted, corner diffracted-diffracted and
double corner diffracted terms can be computed usfng the same procedure
as done for the double diffracted field, however, these terms are

usually very small.,
F. SHADOWING ALGORITHM

After the ray path is determined using the previcus field
calcualtion algorithms, one must then examine the total ray path to see
whether or not it intersects an obstacle. If the ray path is not
interrupted, the field value is computed and superimposed with other
terms. On the other hand, if the ray path is interrupted, the field is

not computed.
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(a) 3- DIMENSIONAL VIEW

(b) SIDE VIEW

Figure 4.14, Two perpendicular components of the field incident to the
second edge.
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First of all, it is necessary to decide whether the incident ray is
toward the plate. This can be done by determining the value of the

parameter C; which is given by
>
€y = [nj * (P - Pes)] : [nj s (P =P (4.105)

>
If the value of Cy is less than or equal to zero, such as the point P1
in Figure 4,15, the ray cannot be interrupted by the plate. Otherwise,
a next step is needed. From the geometry given in the figure, the

intersection point between the incident ray and plate of the jth plate

is given by
> > > +>
Pu = Peg * Co(P = Peg) (4.106)
where
n e (P P )
N. e -
j €13 es
C, = .
2 Py > > (4.107)
ny ° (Pr = Pes)

If the value of C, is greater than one, then the ray cannot reach to the
jth plate such as the point ;2 as shown in the figure. Otherwise, one
more step is needed to decide whether the ray passes through the plate
which is defined by corners. For this test, the parameter C3 is used

and given by
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Figure 4.15. Illustration of the shadowing algorithm.

167




Cy=1 1 &l -m .
3= 1L (4.108)
where Ta + + 7
oo [(Pe = Py) x (P - Pyl
a J cm,j H Cot . H
O = tan 4,109
S R SR Lo
- m=J m+l,J -

and Nj is the total number of corners used to define the jth plate, If
the value of C3 is less than zero, then the ray is not shadowed by the
plate such as the point ;3 in the figure. Otherwise, the ray is
shadowed by the plate such as ;4 in the figure.

A1l ray paths fof each UTD term are tested with this shadowing
algorithm to decide whether or not the UTD term is included in the total

field. This completes the total field computation.
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CHAPTER V

ANALYSIS OF AIRBORNE ANTENNA RADIATION PATTERNS

A. INTRODUCTION

Using the fuselage simulation techniques and the field calculation
algorithms presented earlier, the Ellipsoid-Model Aircraft Code [15] has
been developed to compute and superimpose the various UTD terms for an
arbitrary near or far field pattern.

To demonstrate the capability of this new analytic solution,
various airborne antenna radiation patterns are analyzed using the code.
Some radiation patterns that have been previously computed with old
programs (E1liptic cylinder-model Aircraft Code [40,45] or Prolate
spheroid-Model Aircraft Code [24]) are also computed and presented here
in that this new solution provides an improved result in most cases.

The validity of this analytic solution is also verified by the
comparisons between the calculated and measured data for the wide
variety of shapes such as commercial, private and fighter aircraft,

missiles, and spacecraft. Most of these comparisons are in terms of

169




actual aircraft simulations that have been used in the past for
verification purposes. The solutions are presented in terms of the
radiation patterns of the three basic elements (i.e., axial slot,
circumferential slot, and monopole) which can be used to simulate an
arbitrary fuselage mounted antenna if the aperture distribution is
known,

n order to e

cuts, a cartesian
coordinate system (x,y,z) originally defining the simulation model is
now rotated into a new system (xp,yp,zp) as shown in Figure 5.1, Note
that the new cartesian coordinates are found by first rotating about the
z-axis an angle ¢¢ and then about the y-axis an angle 6c. The pattern
is, then, taken in the (Xp,yp,2p) coordinate system with 6p fixed. The
coordinate systems that apply for the principal plane pattern cuts
(i.e., roll, elevation, and azimuth patterns) are illustrated in Figure
5.2.

To begin any simulation of an aircraft, one needs to start with a
set of scale model drawings. For our purposes, Jane's book [41] "All
the World's Aircraft" is most appropriate in that it provides a

reasonable line drawing for a wide variety of aircraft.
B. COMMERCIAL AIRCRAFT

This section presents various radiation pattern results for
different antennas, locations and commercial aircraft. Measured

radiation patterns were provided by NASA (Hampton, Virginia) for a
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Figure 5,1, Definition of pattern axis.
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(@) ROLL PLANE PATTERN COORDINATES (6,=0°¢.=0°)

(b) ELEVATION PLANE PATTERN COORDINATES(9c=90°,¢c=90°)

Figure 5.2. Transformed coordinate systems for the
principal plane pattern cuts.
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Figure 5.2. (Continued.)
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Boeing 737 and KC-135 aircraft, Since most commercial aircraft are
similar to the 737 and KC-135, one can assume similar results would
apply for other such structures. However, if the aircraft of interest
deviates to a high degree from these geometries, one must verify his
results before he can conclude their accuracy. Once that new
configuration is verified, the class of geometries that can be treated

increases accordingly.
1. Boeing 737 Aircraft

The Boeing.737 aircraft as shown in Figure 5.3 is most interesting
in that extensive experimental work [42,43,44] is available.

One of the major problems in the design of a safe, reliable and
accurate approach and landing system known as the Microwave Landing
System (MLS) is the location of the antennas on the aircraft structure
in order to achieve the desired radiation coverage. For the Beoing 737
aircraft, Stations 220, 250, and 305 on the top of the fuselage and
Stations 222 and 950 on the bottom of the aircraft, as shown in Figure
5.4 were proposed as test locations for the antenna installation. In
order to determine the best location for the MLS application, the
radiation patterns for each test location was analyzed and measured.

Figure 5.5 illustrates the computer model which is used to simulate
the Boeing 737 aircraft for the top mounted antennas. A composite

ellipsoid (77" x 74" x 830" x 308") is chosen to simulate the fuselage
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Figure 5.3. Boeing 737 aircraft.
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Figure 5.4, Test locations for the antenna installation on the
Boeing 737 aircraft.
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Computer simulated model of a Boeing 737 aircraft.
The antenna is located at Station 220.
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surface of the actual aircraft as accurately as possible, especially
near the antenna location. It is assumed here that the radome is
perfectly transparent. This leaves a short, blunt-looking nose section
which extends out from the front of the aircraft. It was found that the
nose section normally has little effect on the resulting pattern. Thus,
the cockpit nose section for simplicity is simulated by a finite flat
piate. The wings and vertical stabilizers are approximated by finite
flat plates which results in a simple model for the aircraft. The
significant features associated with the vertical stabilizer are the
leading edge and thickness of the two flat plates used to approximate
those features of the actual vertical stabilizer. The thickness is
important in that it tends to shadow the direct field from the antenna
for aft radiation directions. For the sake of efficiency, no horizontal
stabilizers are included in this model.

The radiation patterns for a 1/4 monopole mounted at Station 220
above the cockpit on a Boeing 737 aircraft are, then, calculated using
the model just described. The three principal plane results are shown
in Figures 5.6 to 5.8 and found to be in very good agreement with
measurements. The experimental work was performed by the technical
staff at NASA (Hampton, Virginia) using a 1/11th scale model of a Boeing
737 aircraft, But it is noted that the measured results have some

asymmetry in the patterns. This could be attributed to misalignment of
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Figure 5.6, Elevation plane pattern of a A/4 monopole mounted at
Station 220 on top of a Boeing 737 aircraft.
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Figure 5.7. Rol1l plane pattern of a A/4 monopole mounted at
Station 220 on top of a Boeing 737 aircraft.
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Figure 5.8. Azimuth plane pattern of a A/4 monopole mounted at
Station 220 on top of a Boeing 737 aircraft.
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the monopole with respect to the surface normal or the movement of the
model due to shifting weight during the measurement. This misalignment
of the monopole (approximately 3° tilted to the nose section from the
actual surface normal) was detected by the calculated elevation plane
pattern and various azimuth plane patterns. To ﬁompensate this
misalignment in the comparison with measured patterns, the conical
pattern axes were rotated 3° toward the nose section. The various
azimuth plane patterns for this antenna location are computed and shown
in Figures 5.9(a) to (g). In each case, the calculated results compare
very favorably with the measurements.

To evaluate the radiation coverage performance of the MLS antenna
at Stations 250 and 305, the elevation plane patterns for a \/4 monopole
mounted at these locations are obtained. The elevation plane patterns
are used in that it is the most critical MLS sector. It is noted that
the antenna at Station 250 is mounted 4" off the fuselage centerline
because of the structural problems that exist on the actual aircraft

fuselage. Both calculated and experimental results for Stations 250 and
-305 are presented in Figures 5.10 and 5.11, respectively. The results
reveal good agreement between the theoretical predictions and scale
model measurements. In addition, the results indicate that Station 220
appears to be the best choice since it gives the best forward coverage
which satisfies the MLS performance requirement, However, due to

structural problems, the antenna of interest had to be moved to

Station 250.
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Figure 5.9.

Azimuthal conical patterns of a 1/4 monopole mounted at

Station 220 on top of a Boeing 737 aircraft.
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Figure 5.9. (Continued).
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Figure 5.9. (Continued).
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Figure 5.9. (Continued).
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Figure 5.10. Elevation plane pattern of a A/4 monopole mounted at
Station 250 (off center) on top of a Boeing 737 aircraft.
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Figure 5.11. Elevation plane pattern of a A/4 monopole mounted at
Station 305 on top of a Boeing 737 aircraft.
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Next, an antenna location on the bottom of an aircraft fuselage
behind the radome was also proposed for the MLS application., Since the
MLS is used for both for the approach and 1anding, this location
appeared to be very attractive fo; the forward coverage requirement,
For an antenna location at Station 222, the Boeing 737 aircraft was
modeled by a composite ellipsoid (66" x 55" x 785" x 232"). It is noted
that the fuselage dimensions associated with the bottom of the aircraft
are different from the top, in that the aircraft has a definite shape
change from top to bottom. The radome on the 737 aircraft is simulated
by the truncated fuselage as shown in Figure 5.,12.

In order to determine the appropriate polarization (horizontal or
vertical) of the radiated field as well as the location of the antenna,
the elevation plane patterns for a A/4 monopole, a circumferential slot
and an axial slot mounted at Station 222 are calculated and found to be
in very good agreement with measurements as shown in Figures 5.13(a) to
(c), respectively. In this case, vertical polarization has better
forward coverage than horizontal polarization because horizontal
polarization is shorted out by the perfect conducting fuselage.

Based on the MLS antenna coverage requirement, the radiation
pattern of a single vertical polarization monopole is not quite
adequate. Thus a tail mounted monopole was proposed to be mounted at
Station 950 on the bottom of the Boeing 737 aircraft fuselage for missed
approach purposes. This location is chosen because the slope of the

fuselage surface at Station 950 is similar to that at Station 250 on the
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Figure 5.12. Computer simulated model for a A/4 monopole mounted at
Station 222 on the bottom of the fuselage of a Boeing 737
aircraft.
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(a) A/4 monopole case.

Figure 5.13. Elevation plane pattern of an antenna mounted at
Station 222 on the bottom of a Boeing 737 aircraft.
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Circumferential slot case.
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(c) Axial slot case.

Figure 5.13. (Continued).
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top of the fuseiage such that the space coverage of the two antennas
tends to have a better match., The computer model as shown in Figure
5.14 is composed of a composite ellipsoid with four flat plates attached
to the fuselage. Two flat p1ate; are used to simulate the wings, and
the other two simulate the horizonal stabilizers. The engines are
neglected in the present model for simplicity. The elevation plane
radiation pattern is computed and found to be in good agreement with the

measurements as shown in Figure 5.15.
2. KC-135 (Boeing 707) Aircraft

The radiation patterns for the antennas mounted on the KC-135
aircraft are analyzed in this section. Precision pattern measurements
(elevation and roll plane patterns) using a 1/25 scale model were taken
at NASA (Hampton, Virginia) and will be used to verify our numerical
solution.

The line drawings for the aircraft are shown in Figure 5.16., The
computer simulated models of the KC-135 for antennas mounted forward of
the wings and over wings are shown in Figures 5.17 and 5.18,
respectively. The elevation plane patterns for a short monopole are
illustrated in Figure 5.19, The patterns for a circumferential KA-band
waveguide are illustrated in Figure 5.20. Finally, the patterns for
an axial KA-band waveguide are shown in Figures 5.21. Next, the roll

and azimuth plane patterns for a short monopole, a circumferential
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Figure 5.14. Computer simulated model for a A/4 monopole mounted at
Station 950 on the bottom of the fuselage of a Boeing
737 aircraft.

195




CALCULATED

ToP

- ~-~---MEASURED

NOSE

Figure 5.15, Elevation plane pattern of a A/4 monopole mounted at
Station 950 on the bottom of the fuselage of a Boeing
737 aircraft.
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(c) TOP VIEW

Figure 5.16. KC-135 aircraft.
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Figure 5.17. Computer simulated model of a KC-135 aircraft.
The antenna is located forward of the wings.
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Figure 5.18. Computer simulated model of a KC-135 aircraft.
The antenna is located over the wings.
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(b) Antenna mounted over wings

Figure 5.19. Elevation plane pattern for a 2/4 monopole mounted on a
KC-135 aircraft.
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(b) Antenna mounted over wings

Figure 5.20. Elevation plane pattern for a circumferential KA-band
waveguide mounted on a KC-135 aircraft.
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(b) Antenna mounted over wings

Figure 5.21, Elevation plane pattern for an axial KA-band
waveguide mounted on a KC-135 aircraft.
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ka-band waveguide, and an axial Ka-band waveguide mounted forward and
over the wings are shown in Figures 5.22 to 5.27.

The computed results are féund to be in very good agreement with
the measurements in the elevation and roll planes. The comparisons of
the azimuth plane radiation patterns are not shown here, since the
measured data was not available.

To further demonstrate the versatility of this solution, the
radiation patterns for the Lindberg crossed-slot antenna [46] mounted at
Station 470 along the top center-line of a KC-135 aircraft is
analyzed. The Lindberg antenna (crossed slots, 90° phase difference
between two slots) is a UHF antenna designed for use in a
satellite-to-aircraft communications link, Using the computer model as
shown in Figure 5,28, the radiation patterns were computed for a right
circularly polarized Lindberg antenna. Various calculated patterns
along with the measured results as taken form reference [46] are
presented in Figures 5.29 to Figures 5.32 and, again, good agreement is
obtained. The gain level in each case is adjusted to compare with
measurements. The Eg pattern corresponds to the vertical component,
E¢ to the horizontal component and ECp pattern to the circularly
polarized field. Note that all patterns are computed at a frequency of

6.25 GHz and .039x x .78X slots are considered in this calculation.
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(b) Antenna mounted over wings

Figure 5.22. Roll plane pattern for a 1/4 monopole mounted on a
KC-135 aircraft.
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(b) Antenna mounted over wings

i -band circumferential
Figure 5.23. Roll plane pattern for a KA-band
: waveguide mounted on a KC-135 aircraft.
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(b) Antenna mounted over wings

Figure 5.24., Roll plane pattern for a KA-band axial waveguide
mounted on a KC-135 aircraft.
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(b) Antenna mounted over wlngs

Figure 5.25. Azimuth plane pattern for a A/4 monopole mounted on a
KC-135 aircraft.
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(b) Antenna mounted over wings

Figure 5.26. Azimuth plane pattern for a KA-band circumferential
waveguide mounted on a KC-135 aircraft.
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(b) Antenna mounted over wings

Figure 5.27. Azimuth plane pattern for a KA-band axial waveguide
mounted on a KC-135 aircraft.
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Figure 5.28. Computer simulated model for a Lindberg antenna mounted
on a KC-135 aircraft.
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Figure 5.29. Elevation plane pattern for a Lindberg antenna

mounted on a KC-135 aircraft.
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Figure 5.29. (Continued.)
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Figure 5.30. Roll plane pattern for a Lindberg antenna mounted on
a KC-135 aircraft.
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Figure 5.30. (Continued).
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Azimuth plane pattern for a Lindberg antenna mounted on a
KC-135 aircraft,
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Figure 5.31. (Continued).
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Figure 5.32. Azimuthal conical pattern (8,=45°) for a Lindberg antenna
mounted on a KC-135 aircraft.
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Figure 5.32. (Continued).
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C. PRIVATE AIRCRAFT SIMULATIONS

This section presents a study of the effects on the radiation
patterns associated with modeling private aircraft.
Measured roll plane patterns were provided by NASA (Hampton,

Virginia) [37,38,39] and are used throughout the following discussion,

1. Cessna 4028

Let us consider the problem of modeling the Cessna 402B illustrated
in Figure 5.33. Our goal now is to investigate how to model the roll
plane of this aircraft using a composite ellipsoid and flat plates to
best match the experimental results. Experimental results have been
obtained from NASA (Hampton, Virginia), using the 1/7 scale model at a
range of 50 feet; however, the model is input in full scale dimensions
at a pattern range of 350 feet.

Past studies have indicated that matching the curvature of the
fuselage near the antenna is more advantageous than trying to
approximate the overall fuselage shape. With that in mind, the models
illustrated in Figure 5.34 are considered first, Here the height and
width of the ellipsoid match the corresponding dimensions of the actual
fuselage top portion near the antenna, and wing§ are simulated as flat
plates. Note that the prolate spheroid model of the old Aircraft Code
{24] is also included in the figure for comparison. The resulting roll
plane patterns are shown in Figure 5.,35. The comparison shows that the

ellipsoid model has led to a reduction in intensity of about 4 dB
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Figure 5.33. Cessna 4028B.
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Figure 5.34. Model for Cessna 402B with wings only.
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Figure 5.35. Pattern for Cessna 402B model shown in Figure 5.34.
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throughout most of the lower half of the pattern, which is a definite
improvement ; however, the large lobes at *105° and some ripple
throughout the pattern are still missing.

A better model is obtained by consideration of the fuel tanks
mounted on the wing tips. The actual shape of the tanks is curved, but
of course they must be approximated by flat plates. A model with each
fuel tank simulated as a single plate is shown in Figure 5.36, with the
corresponding pattern shown in Figure 5.37. It is apparent that this
ijs a major improvement in the lower half of the pattern, as the +105°
lobes are not present. A problem, however, is the excessive signal
intensity in the 0° to *20° range due to strong direct reflections off
the fuel tanks.

To alleviate this problem, let us use two plates to simulate each
fuel tank. This will decrease the amount of direct diffraction by
better simulating the curved surface of the tank. Such a model is
illustrated in Figure 5.38, with the corresponding pattern shown in
Figure 5.39. A definite improvement is shown in the figure, but the
intensity in the *110° to £140° range is still about 6 or 8 dB high.
However, this pattern is within reasonable engineering agreement with
the experimental result.

For greater accuracy, the effects of the engine housings can be
considered. A model with engine housings and fuel tanks is shown in
Figure 5.40, and the pattern resulting from this simulation model is

shown in Figure 5.41. It is apparent from this result that the
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Figure 5.36. Model for Cessna 402B with one plate simulation of fuel
tanks.
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Pattern for Cessna 402B model shown in Figure 5.36.
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Figure 5.38. Model for Cessna 402B with two plate simulation of fuel
tanks.
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Figure 5.39, Pattern for Cessna 402B model shown in Figure 5.38.
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Model for Cessna 4028 with engines and fuel tanks.
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Figure 5.41, Pattern for Cessna 4028 model shown in Figure 5.40.
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pattern is greatly improved in the t120° to +180° range. Certainly
the results shown on this figure are aéceptab1e for engineering

applications.
2. Beechcraft Baron

Another case which presents an interesting modeling challenge is

illustrated in Figure 5.42. This model is most useful for testing our
new code in that this has wing mounted engines and propellers.

A model is desired which will yield a computed roll plane pattern
in close agreement with experimental results. An initial model
including wings and engine housings is illustrated in Figure 5.43 with
the corresponding roll plane pattern shown in Figure 5.44. One notes
that the computed result is well matched with the experimental result,
but the large ripple, especially in the lower half, is missing. Perhaps
an upgrading of the model could improve our accuracy. However, the rest
of the pattern would seem, if not perfect, at least acceptable for any
engineering applications.

Next, let us consider the effect of the rotating propellers in
front of the engines. It is necessary to check the scattering due to
the rotation of the propellers in that they are close to the antenna.
Four different positions (i.e., 0°, 45°, 90°, 135°) of the stationary

propellers are chosen to simulate the rotating motion of the propellers
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Figure 5.42, Beechcraft Baron with antenna in forward location.
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Beechcraft Baron model with engine housings.
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Figure 5.44. Roll conical pattern (ep=80°) Beechcraft Baron model
shown in Figure 5.43.
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as shown in Figure 5.45. For simplicity, only the left propeller is

. considered with the corresponding roll plane pattern shown in Figure
5.46. Note that width of patterr line indicates the variation of the
radiation pattern due to the rotation of the propellers. One notes that
the variation margin in the 200° to 300° range is about 4 or 6 dB. This

example shows the extended capability of our code in the pattern

3. Cessna 150

Another interesting modeling challenge is the Cessna 150
illustrated in Figure 5.47. Perhaps the obvious way to model the Cessna
150 would be to use the ellipsoid as a fuselage, then put in a flat
plate above it to simulate the wing. However, the Aircraft Code has the
requirement that the source be mounted on the ellipsoid; whereas in this
case, the antenna is located on the wing. An acceptable model within
the requirements of this program can be obtained as illustrated in
Figure 5.48, where the ellipsoid is used lengthwise as the wing. Note
~ that the nose and tail are modeled as flat plates. The resulting
elevation plane pattern for this model is shown in Figure 5.49,

Although the magnitude of ripple is not quite perfect, it is of the
correct spacial frequency, and the general shape of the pattern is good.

A slight disadvantage to this particular use of the ellipsoid is
due to the sharp curvature near the antenna, in that the pattern is

quite sensitive to small changes in source location.
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Figure 5.45, Beechcraft Baron model with rotating properllers on one
side,
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Figure 5.46. Roll plane pattern (ep=80°) for Beechcraft Baron model
shown in Figure 5.45.
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Figure 5.47.

(b) Front view.

Cessna 150.
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Cessna 150 model. Dashed lines are not part of the

Figure 5.48.
computer simulation.
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Figure 5.49. Cessna 150 elevation plane pattern for model shown in
Figure 5.48.
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D. MILITARY AIRCRAFT AND MISSILES

This section presents the study of the radiation patterns for the

antennas mounted on the fuselage of various military aircraft (F-16,
F-4, A-10 and C-141) and missiles. The ability of this solution to
analyze very complex structures is verified in terms of military
aircraft., Various scattering mechanisms are also studied individually

using the F-16 in order to show the significance of the variouserms.

1. F-16 Fighter Aircraft

The most interesting model among military aircraft studied to date
is the F-16 fighter aircraft in that extensive experimental results [a7]
are available. The measured data was obtained by General Dynamics using
a quarter scale model of the F-16. The line drawings for a F-16 fighter
aircraft are shown in Figure 5,50,

The TACAN antenna mounted on the top of the F-16 fighter fuselage
as shown in Figure 5.50 is studied here and operated at a frequency of
0.96 GHz. As shown in Figure 5.51, a composite ellipsoid (21.5" x 23" x
400" x 250") is chosen to simulate the fuselage of the aircraft as
accurately as possible, especially near the antenna location, and the
. other appendages (i.e., wings, stabilizers, tails, etc.) of the aircraft
are simulated using 12 flat plates. Note that the radome of the F-16

fighter is simulated as a truncated fuselage.
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Figure 5.50., F-16 fighter aircraft,
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Figure 5.51. Computer simulated model of an F-16 fighter aircraft.,
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The various UTD terms are demonstrated for the roll plane radiation
pattern in Figure 5.52 and the total field is compared with the
experimental results in Figure 5.53. Note that the pattern of the
prolate spheroid model [24] is also included in the figure to show the
improvement of the new code. As can be seen from the comparison, the
result of the ellipsoid model shows very good agreement with the maximum
discrepancy being less than 2 dB. Note that each pattern is normalized
to the same level such that one can compare the significance of each UTD
term. Since the individual UTD terms can be analyzed separately using
this code, one can ascertain the significant features of a complex
target. The elevation plane pattern is shown in Figures 5.54 and the
calculated result compares quite favorably with the measurement.

To show the complete volumetric radiation patterns, the various
azimuthal conical patterns (ep = 10°, 20°, 30°, 40°, 45°, 50°, 55°,
60°,65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°,
see Figure 5.2(c)) are calculated as shown in Figures 5.55 through 5.74,
In each case, both the principal and cross polarizations are considered.
The calculated results compare very favorably with the measurements in
each case, It is noted that the éockpit section simulation is not
complete in our model; as a result, one can not expect good agreement
between the calculated and measured results in the nose region in that
" the cockpit would be along the direct'radiation path for such radiation
directions. 1In addition, the ripple above the aircraft in the elevation
pattern is most likely created by the cockpit which is not simulated in

the analysis.
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Figure 5.52.
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Various UTD terms for the roll plane pattern of a A/4
monopole mounted on top of an F-16 fighter aircraft.
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Figure 5.52. (Continued).
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Figure 5.52. (Continued).
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Figure 5.52. (Continued).
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Figure 5.53. Total field for roll plane pattern of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.54. Elevation plane pattern of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.55. Azimuthal conical pattern (8, = 10°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
(See Figure 5.2(c)).
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Figure 5.56. Azimuthal conical pattern (ep = 20°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.,57. Azimuthal conical pattern (8p = 30°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Azimuthal conical pattern (ep = 40°) of a \/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.59. Azimuthal conical pattern (6p = 45°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft,
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Figure 5.60. Azimuthal conical pattern (8p = 50°) of a 1/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.61. Azimuthal conical pattern (8 = 55°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.62. Azimuthal conical pattern (8p = 60°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.63. Azimuthal conical pattern (6 = 65°) of a \/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.64, Azimuthal conical pattern (8p = 70°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5,65, Azimuthal conical pattern (ep = 75°) of a \/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.66. Azimuthal conical pattern (9p = 80°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.67. Azimuthal conical pattern (ap = 85°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.68., Azimuthal conical pattern (ep = 90°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.

263




CALCULATED
— === MEASURED

Figure 5.69. Azimuthal conical pattern (8p = 95°) of a /4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.70., Azimuthal conical pattern (Sp = 100°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.71. Azimuthal conical pattern (ep = 105°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.72, Azimuthal conical pattern (8p = 110°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.,73. Azimuthal conical pattern (ep = 115°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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Figure 5.74. Azimuthal conical pattern (ep = 120°) of a A/4 monopole
mounted on top of an F-16 fighter aircraft.
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2. F-4 Fighter Aircraft

This example is illustrative in that the antenna is mounted on the
belly of an F-4 aircraft which is loaded with armament. The F-4 fighter
aircraft has a complex airframe with many scattering objects (i.e., fuel
tanks, jet intakes, pylons, etc.) attached to the basic frame. A A/4
monopole is used to simulate a UHF blade which is mounted on the bottom
fuselage of an F-4 aircraft and operated at a frequency of 375 MHz. The
measured data was obtained at the RADC Newport antenna range.

The Tine drawings of the F-4 fighter aircraft are shown in Figure
5.75. The computer model of the F-4 aircraft is illustrated in Figure
5.76. A composite ellipsoid (5" x 20" x 300" x 200") is chosen to
simulate the bbttom surface of the aircraft fuselage; whereas, the other
appendages are simulated using 11 flat plates. It is noted that the
actual shape of the fuel tank is curved and each fuel tank is simulated
as a single plate in our model for simplicity.

The azimuthal conical pattern (ep = 105°) is compared with a
measurement result in Figure 5,77. Although some discrepancy does

exist, the general shape of the pattern is in good agreement.
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F-4 (Phantom) fighter aircraft.
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Figure 5.76. Computer simulated model of an F-4 Phantom fighter
aircraft,
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Figure 5.77. Azimuthal conical pattern (ep = 105°) of a A/4 monopole
mounted on the belly of an F-4 fighter aircraft.
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3. A-10 Aircraft

In this case, a four monopole array is mounted on the belly of an

A-10 aircraft. The line drawings are shown in Figure 5.78. The
experimental data was also obtained at the RADC Newport site.
The computer simulation model is illustrated in Figure 5.79. In

that the four monoples are spaced a half wavelength apart, the mutual
coupling between the antennas is significant and cannot be neglected in
the pattern calculations, This can be solved using a thin wire moment
method code [49,50] to treat the four closely spaced loaded-dipoles (50
ohms at center of each dipole) in order to obtain the excitation of each
monopole even though only one element was excited.

The azimuthal conical pattern (ep = 105°) is compared with

measurement in Figure 5.80. The result reveals good engineering

agreement,
4, C-141 Aircraft

Let us consider a monopole mounted on the top of a C-141 aircraft.
The line drawings for a C-141 aircraft are shown in Figure 5.81. The
experimental work [40] was performed at General Dynamics (San Diego,
California) using a 1/10 scale model of a C-141 aircraft.

Figure 5.82 illustrates the computer model which is used to
simulate a C-141 aircraft. A composite ellipsoid (7.37' x 8.37' x 90' x

46.05') is chosen to simulate the fuselage surface of the actual
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Figure 5.78. A-10 aircraft.
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(b) BOTTOM VIEW

Figure 5.79. Computer simulated model of an A-10 aircraft.
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Figure 5.80. Azimuthal conical pattern (8, = 105°) of four monopoles
mounted on the belly of an A-10 aircraft.
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Figure 5.81. C-141 aircraft.
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Figure 5.82. Computer simulated model of a C-141 aircraft.
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aircraft as accurately as possible, and finite flat plates are used to
simulate the wings, vertical stabilizer and T-tail as shown in Figure
5.82.

The radiation patterns for a A/4 monopole mounted on the fuselage
of a C-141 aircraft are calculated using the model just described. In
order to verify the validity of the analytic solution, various azimuthal
conical patterns (10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, see
Figure 5.2(c)) and the elevation plane pattern are computed and compared
with measured results as shown in Figures 5.83 and 5.84, respectively.
The calculated results compare very favorably with the scale model

measurements,
5. Missile

The missile antenna problem considered next is interesting in that
the antenna is mounted among four large ram jets which significantly
impact on the antenna location problem,

The front view of the missile and the computer simulation model are
shown in Figure 5.85. Note that the axial slot antenna is mounted
between the ram jets. The fuselage is simulated as a composite
ellipsoid and only two side walls of the intakes are simulated with two
flat plates. It is noted that a fuselage blockage plate is added in the
computer simulation model and is shown as a dashed line in Figure

5.85(b). This feature is added in the code to prevent the ray
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Figure 5.83. Azimuthal conical patterns of a A/4 monopole mounted on
a C-141 aircraft.
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Figure 5,83, (Continued).
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Figure 5.83. (Continued).
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Figure 5.83. (Continued).
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Figure 5.83. (Continued).
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Figure 5.84, Elevation plane pattern of a A/4 monopole mounted on
top of a C-141 aircraft.
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(a) MISSILE MODEL

FUSELAGE BLOCKAGE PLATE

(b) COMPUTER SIMULATED MODEL

Figure 5.85. Missile model for an axial slot mounted between two
ram jets,
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contribution passing through the fuselage itself in the field
calculation. The roll and elevation plane patterns of this model are
compared with measured results in Figures 5.86 and 5.87, respectively.
The calculated results are in good agreement with the measurement.

In order to improve the pattern performancé, the axial slot antenna
was mounted on the ram jet instead of the fuselage as shown in Figure
5.88. In this case, the air duct is simulated as a composite ellipsoid
and the other structures (including the fuselage) are simulated by
multiple flat plates. The roll and elevation plane patterns are
compared with measurement data in Figures 5.89 and 5.90, respectively.
The results reveal very good agreement between the theoretical

prediction and actual measurements,

E. SPACE SHUTTLE

In the design of antennas for spacecraft, re-entry vehicles, and
high performance aircraft, the major area of difficulty is achieving
near omni-directional pattern coverage with flush mounted elements. The
problem is compounded by the unavailability of several prime locations
on the frame, such as the top of the mid fuselage, all leading-edge
surfaces, the nose, and the vertical stabilizer., These difficulties
lead to the Orbiter antennas being specially developed and qualified in
order to meet the performance requirements with a high degree of

reliability. In addition, the radiation coverage requirements of some
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Figure 5.86. Roll plane pattern for an axial slot mounted between two
ram jets.
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Figure 5.87, Elevation plane pattern for an axial slot mounted between
two ram jets.
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Figure 5.88, Missile model for an axial slot mounted on a ram jet.

291




——— CALCULATED
====MEASURED

BOTTOM
(SCALE: EACH DI1VISION=1008)

Figure 5.89. Roll plane pattern for an axial slot mounted on a
ram jet.
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Figure 5.90., Elevation plane pattern for an axial slot mounted on a
ram jet.
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of the Orbiter antennas are complicated by the multiple requirements for
operation during launch, from earth orbit to both ground station and
relay satellites, and with the landing area during atmospheric flight.

The major factor influencing the decision as to what type of
antenna design to utilize for each of the Shuttle systems is the
determination of the mounting location on the Shuttle vehicle. The
choice of a mounting location is influenced by such factors as available
mounting structure, TPS (thermal protection system) covering material,
required angular coverage, and the effects of nearby blocking structure
during various phases of the Shuttle mission timeline. The task of
determining antenna locations is normally accomplished utilizing a
full-scale mockup of the subject vehicle on an antenna range. However,
due to the large size of the Shuttle, such an approach is not feasible.
Therefore, the need for an efficient analytic solution is quite
apparent.

The performance of the S-Band Quad Antennas for PM communications
is investigated here using this analytic solution. The basic antenna
configuration [48] consists of a set of four circularly polarized
antennas flush-mounted with 90° spacing around the roll axis of the
Orbiter forward fuselage as shown in Figure 5.91.

The computer simulation model for the top mounted antenna is
illustrated in Figure 5.92. A composite ellipsoid (75" x 104" x 1500" x
130") is chosen to simulate the top portion of the fuselage surface,

and the other structures such as side walls, nose, wings and vertical
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Figure 5.91, S-band quad antenna locations on a Space Shuttle.
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Figure 5.92. Computer simulated model for a crossed-slot antenna
mounted on top of a Space Shuttle Orbiter.
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stabilizer are simulated by 23 flat plates as shown in Figure 5.92, The
three principal plane radiation patterns for the top mounted
crossed-slot antenna are computed as shown in Figures 5.93 through 5.95.

The blocking effects of the payload bay doors during various phases
of the Shuttle mission timeline are analyzed by calculating the roll
conical (ep=45°) patterns with the doors open and closed. For the top
mounted antenna, the heat radiators which actually cause the blocking
and reflection of the incident ray are simulated as three flat plates on
each side as shown in Figure 5.96. The roll conical (ep=45°) patterns
for the shuttle with payload bay doors opened are compared with those
for the closed payload doors in Figures 5.97 and 5.98. Comparing these
patterns, one can easily see the blocking effect of the heat
radiator in the 100° to 160° range and the large disturbance (around 20
dB) in the pattern in 30° to 60° range which is the main beam region of
the top mounted antenna., This is due to strong direct reflections off
the heat radiator.

The computer simulation model for the bottom mounted antennas is
illustrated in Figure 5.99. Note that the simutation models are turned
upside down for bottom mounted antennas. For this situation, the
outer covers of the payload bay doors cause the blockage and reflection,
and are simulated as two flat plates on each side as shown in Figure

5.100. The roll conical patterns (ep=45°) for the shuttle with
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Figure 5.93. Roll plane radiation patterns for a crossed-slot antenna
mounted on top of a Space Shuttle Orbiter.
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Figure 5.94.

(SCALE: EACH DIVISION= 4DB)

Elevation plane patterns for a crossed-slot antenna
mounted on top of a Space Shuttle Orbiter.
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Figure 5.95. Azimuth plane patterns for a crossed-slot antenna
mounted on top of a Space Shuttle Orbiter,
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Figure 5.96. Computer simulated model for a crossed-slot antenna
mounted on top of a Space Shuttle Orbiter when the
‘ payload bay doors are open.
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Figure 5.97. Roll conical patterns (eg=45°) for a crossed-slot

antenna mounted on top of a Space Shuttle Orbiter
when the payload bay doors are closed,
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Figure 5.98. Rol1 conical patterns (6,=45°) for a crossed-slot
antenna mounted on top o? a Space Shuttle Orbiter
when the payload bay doors are open,
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(a) SIDE VIEW

(b} FRONT VIEW

Figure 5.99.

(c) BOTTOM VIEW

Computer simulated model for a crossed-slot antenna
mounted on the bottom of a Space Shuttle Orbiter.
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(a) SIDE VIEW
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Figure 5.100. Computer simulated model for a crossed-slot antenna
mounted on the bottom of a Space Shuttle Orbiter when
the payload bay doors are open.
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payload bay doors opened are compared with those closed in Figures 5.101
and 5.102, respectively. The results also indicate severe disturbance
of the pattern due to the strong, reflections off the payload bay doors.
The above results indicate why one can lose use of his
communication channel during those times when the shuttle payload doors
are open, This illustrates how one can quickly analyze the performance

of antennas in a complex changing environment.
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Figure 5.101. Rol11 conical patterns (8,=45°) for a crossed-slot antenna
mounted on the bottom of a Space Shuttle Orbiter when
the payload bay doors are closed.
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Figure 5.102. Roll conical platterns (6,=45°) for a crossed-slot
antenna mounted on the bogtom of a Space Shuttle
Orbiter when the payload bay doors are open.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The object of this research has been to develop an efficient and
accurate analytic solution for the high frequency radiation patterns of
on-aircraft antennas mounted on the fuselage.

In most cases, scale model measurements have been used to design .
and locate airborne antennas. However, this approach is both expensive
and time consuming., Thus, the need for an efficient and reliable
analytic solution of on-aircraft antenna patterns is quite apparent.
The approach applied for this solution is the Uniform Geometrical Theory
of Diffraciton (UTD). It is a high frequency technique with the only
limitation being that the source and various scattering centers be
separated on the order of a wavelength or more. In some cases, this
requirement can be relaxed to approximately a quarter-wavelength,

The basic approach applied here is to break up the aircraft into
its simplest structural form so that the study is applicable to
general-type aircraft. The fuselage is modeled as a perfectly

conducting composite ellipsoid; whereas, the other appendages (such as
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wings, horizontal and vertical stabilizers, nose, fuef tanks and
engines, etc.) are modelled as perfectly conducting flat plates that can
be attached to the fuselage or to each other. The composite ellipsoid
fuselage model is necessary to successfully simulate the wide variety of
real world fuselage shapes. In fact, the fuselage has a dominant effect
on the resulting radiation pattern in that the significant energy region
is confined to the vicinity of the antenna.

An efficient numerjca] technique, which uses elliptic cylinder
and elliptic cone perturbation methods, for the computation of the
geodesic paths on an ellipsoid surface was introduced and verified by
the comparisons with exact solutions in Chapter III. The results
confirm that for a given radiation direction in the shadow region, the
geodesic path (i.e., the actual ray path) and the final diffraction
point on the ellipsoid surface can be efficiently solved using the
perturbation methods. Based on the fuselage simulation techniques
discussed in Chapter III, the algorithms for the actual computation of
each individual UTD term such as the source field, reflected field,
diffracted field, corner diffracted field, and higher order terms have
been discussed in Chapter 1V.

Using the fuselage simulation technique and the field calculation
algorithms, this new Aircraft Code has been developed to compute and
superimpose the various UTD terms for near or far field calculations.

This newly developed analytic solution provides an accurate, efficient
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and useful means for determination of more optimum antenna designs and
Tocations based on their pattern performance. The capability of the new
solution was demonstated for the wide variety of examples in Chapter V.

The optimum antenna locations and proper polarization have been
found for the microwave landing system on a Boeihg 737 aircraft. The
scattering effects of the wings, tail, engine housing, fuel tanks, and
rotating propellers on the radiation patterns were analyzed for the
various antennas mounted on a KC-135, a Cessna 402B and a Beechcraft
Baron. Note that the rotating motion of the propellers was simulated by
considering 4 different stationary positions of the propellers. The
program runs a pattern in approximatley 4 minutes for a commercial
aircraft model on a VAX 11/780 computer.

To show the applicability of this solution for an antenna mounted
on the wing of a Cessna 150 aircraft, the e]liﬁsoid was used lengthwise
as the wing, and the fuselage was modelled by flat plates.

To further demonstrate the versatility of this solution, various
azimuthal radiation patterns for a monopole mounted on an F-16 fighter
and C-141 aircraft were obtained. The scattering effects of complex
stores mounted on military aircraft were also investigated in terms of
an F-4 fighter and A-10 aircraft. Missile antennas mounted among four
large ram jets were also simulated for both an antenna mounted between

as well as on the ram jets.
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The validity of this solution was also verified by numerous
comparisons between the calculated and measured data. In most cases,
the results of this solution revealed an improvement over the previous
solutions [24,40] and show very good agreement between the theoretical
predictions and various scale model measurements.

In a more recent example, the performance of the S-Band Quad
antennas mounted on the Space Shuttle Orbiter was analyzed. The
scattering and blocking effects of the open payload bay doors was
analyzed by computing the roll conical patterns (ep=45°). The results
revealed large disturbances (more than 20 dB) in the pattern in the main
beam regions for both the top and bottom mounted antennas. This is due
to the strong reflections off the payload bay doors and heat radiators.
Using this approach, one can efficiently analyze the pattern performance
of antennas radiating in a complex environment such as an aircraft,

With such a tool, an antenna designer can consider numerous alternatives

in order to optimize his design.
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APPENDIX A

EXACT GEODESIC PATHS FOR AN ELLIPSOID

A numerical method employing calculus of variations to calculate
the geodesic paths on an ellipsoid [36] is presented in this appendix.
This solution is used to check the validity of the perturbation solution
which was introduced to efficiently calculate the geodesic paths on an
ellipsoid in Section III-C.

Using rectangular coordinates, an ellipsoid can be described as

PR Y Iy I (A.1)

where, without loss of generality, it is assumed that c>b>a>0. The key

to the derivation of the geodesic path solution of an ellipsoid is to

find a coordinate system which is orthogonal on the ellipsoidal surface.
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Consider the following three equations

x2 y2 22

= 2
azZ-t *pig t T 1 ,a9>¢ (A.2)
x2 y2 22

= 2 2
az-n * bZon * Zon 1 ,b2>n>a (A.3)
x2 y2 22

aZ-t T bl-t MY 1 ,¢2>n>b2 (A.4)
which are of an ellipsoid, a hyperboloid of one sheet, and a hyperbolid
of two sheets [35], respectively, all confocal with the ellipsoid of
Equation (A.2). The variables ul =g, u2 = n, u3 = 7 are called
ellipsoidal coordinates. The transformation to the rectangular
coordinates is obtained by solving Equations (A.2), (A.3), and (A.4)

simultaneously for x, y and z, such that

~(a2-) (a2=n) (a2-1)7)

X =2 (c2-a2)(b2-a2) (A.5)
~(b2-5) (b2-n) (b2-1)=

y =z (Cz_b2)<az_b2) (A°6)
~(c2-g) (c2-n) (c2-1)|

z =3 (a2-c2)(b2-c2) . (A.7)
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In terms of the ellipsoidal coordinates, the displacement vector

->
dr can be written as

ar 1 £

r
df = o= dul + 57 du2 + o5 dud = djdul 4 dydu2 + ddu? .
(A.8)
Then the length of a line element, denoted by ds, is
3 3 . .
(dS)z = dF . dF = 2 2 E]. . gj du1 du‘]
i=l j=1
3 . .
i
= 1L gy e (A.9)
i=1 j=1
where
. . X 3y 3y 3z 3z
955 =3 =25 =507 aud *aud aud t ol ad - (A.10)
It can be shown, using Equations (A.5), (A.6) and (A.7), that
955 =0, i 1 # ] (A.11)
1 (t-£)(n-E)
911 =4 (aZ-g)(b2-g)(c2-¢) (A.12)
1 (g=n)(7-n)
922 = 4 (a2-n)(b2-n)(c2-n) (A.13)
and
1 (n-1)(E-1)
933 * 4 (a2-1)(b2-1)(c2-1) . (A.18)
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By substituting Equations (A.11) through (A.14) into Equation (A.9), one

obtains

| (o) ,  (En)(rn) )
,(az-a)(bz-s)(cz-s) (d8)" + Gz bZ-n) (c2-m) (4"

1
(ds)? = 7

+

(n-7)(g-1) ) l
+ (aZ-7)(b2-7)(cZ-7) (47 l

(A.15)

For the ellipsoid of Equation (A.1l), E = dg

0. Then Equation (A.15)

becomes

n(dn)2 t(dt)?
e l (n-a2)(n-b2)(n-c2) ~ (r-a%)(1-b2)(1-c2)

1
3

(A.16)

or
1/2

1/2 ‘ nn'2 T
‘ (n-22)(n-b2)(n-c2) ~ (t-a2)(t-b2)(1-c?)

S = %’f(r-n) dr

(A.17)

where n'

dn/dt and dt is assumed to be positive. Let h(n,n',Tt) denote

the integrand of Equation (A.17), i.e.,
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nn'2 T
(n-a2)(n-b2){n-c2) ~ (t1-a2)(t-b2)(1-c?) | :

h = (r-n)l’z

(A.18)

Then using the calculus of variation technique, it can be shown that the

geodesic path satisfies the following Euler's equation:

d 3h  3h
deont “an 0 . (A.19)

The next step is to express Equation (A.19) as a complete differential.

From Equation (A.18), one obtains

d
d a2 g7 [n'(1-n)] 3h2 ah2  2h?
dton' = n'(tn) oan T Zan t 1w (A.20)

and from Equation (A.19), one obtains

d h2  dhah  ah2
dron ~Z2dran tam (A.21)

By substituting Equations (A.19) and (A.20) into Equation (A.21) and _

rearranging the various terms, one obtains
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d{n'(t-n)] 1 3h 1d 3h

gt hoan t (T Rt
1 dh 3h
-n' () jZ gz t N =0 (A.22)
which can be simplified to
d ‘ 1 2h 2 !
;! () §oger + (b9 |- o . (A.23)

Equation (A.19) becomes a complete differential. The derivation of the
geodesic path solution is straight forward from Equation (A.23). It is
obvious that
1 sh >
n(rn) y gt b= -8 (A.24)

where B is a constant.

Combining Equations (A.18) and (A.24), one obtains

- n{dn)? - t(dt)2
(n-a2)(n-b2)(n-c2)(n-b2+8) ~ (1-a2)(-b2)(r-c2)(r-b2+g) °* (A.25)

Since c2>t>b2>n>a2, it is obvious that t-b2+g>0>n-b2+8 or b2-n>g>b2-t,
Thus, Equation (A.25) is the geodesic path solution. However, it is

more convenient to make the following changes of variables.
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3
]

a2sin2¢ + b2cos2¢ , (A.26)

and

b2cos2y + c2sin2y . (A.27)

A
]

In terms of ¢ and ¢, the geodesic path solution in Equation (A.25)

can be rewritten as

[b2 - (b2-a2) sin2 ¢] (d¢)2
[(c2-b2) + (b2-a2) sin2 ¢] [-8 + (b2-a2) sinZ ¢]

[b2 + (c2-b2) sin2 ¢] (dy)?
* [(b2-a2) + (c2-b2) sinZ ] [8 + (c2-b2) sin2 4]  °* (A.28)

and in integral form as

1/2
é [b2 - (b2-a2) sinZ ¢] I
£ [(c2-b2) + (b2-a2) sin2 ¢] [-8 + (b2-a2) sin2 ¢] de]
1
- _
172
.’ b2 + (c2-b2) sin2 v
B i [(b2-a2) + (c2-b2) sin2 y] [8 + (c2-b2) sin? ] |dv]
1

(A.29)

where b2-a2>g>b2-c2, Note that the absolute values of d¢ and dy are

used in Equation (A.29).

319




To define the ranges of ¢ and ¥, it is necessary to go back to
Equations (A.5), (A.6) and (A.7). With &£=0 and in terms of ¢ and v,

they can be rewritten as

a 172
X = Tc237)172 Ccosé (bZcos2y + c2sin?y - a2) (A.30)
y = bsin¢ siny (A.31)
and
¢ 2.a32gin2 2c0524) 2
Z = (2,2)172 COsY (c2-a?sin?, - b%cos?¢) . (A.32)

If the goedesic path, Equation (A.29), crosses the curve ¢=0 or =, then
B<0 and if it crosses the curve v=0 or =, then 8>0. Thus to ensure the
continuity of ¢ and ¢ along the geodesic path, the ranges of ¢ and ¥ are

defined as follows:
Oy, = < ¢ <27 for 8 <0

and

-t <PpP<2n, 0<dp< fors8>0 .,

Figure A.l1 illustrates the ¢ and ¢ curves as projected onto the x-z
plane. Equation (A.29) is the geodesic path solution of an ellipsoid

which is employed for obtaining more exact geodesic paths. When the
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Figure A.1. Projection of 4- and ¢- curves onto the xz plane of
an ellipsoid.
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geodesic path includes one of those four points, Pl’ Pz, P3 and P4 in
the figure, then 8 must equal zero and the integrals in Equation (A.29)
diverge at those points. Thus if’(q,z,wz) = Py, i = 1,2,3,4, then it is
necessary to replace (¢2,¢2) by (¢,+4, ¥,+ay) where A¢ ~ 0 and Ay = 0.
The geodesic path between the two points (¢1,¢1) and (¢2,w2) can be
determined from Equation (A.29) by first determining the value of 8.
Since there are absolute value-signs attached to the differential d¢ and
dy in the geodesic path solution, it is important to know how the

variables ¢ and ¢ change from 1 to by and ¥ to ¥,, respectively.
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